Indecomposable modules in coils
Colloquium Mathematicum, Tome 93 (2002) no. 1, pp. 67-130
Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences
We describe the structure of all indecomposable modules in standard coils of the
Auslander–Reiten quivers of finite-dimensional algebras over an algebraically closed
field. We prove that the supports of such modules are obtained from algebras with
sincere standard stable tubes by adding braids of two linear quivers. As an application
we obtain a complete classification of non-directing indecomposable modules over all
strongly simply connected algebras of polynomial growth.
Mots-clés :
describe structure indecomposable modules standard coils auslander reiten quivers finite dimensional algebras algebraically closed field prove supports modules obtained algebras sincere standard stable tubes adding braids linear quivers application obtain complete classification non directing indecomposable modules strongly simply connected algebras polynomial growth
Affiliations des auteurs :
Piotr Malicki 1 ; Andrzej Skowro/nski 1 ; Bertha Tomé 2
@article{10_4064_cm93_1_7,
author = {Piotr Malicki and Andrzej Skowro/nski and Bertha Tom\'e},
title = {Indecomposable modules in coils},
journal = {Colloquium Mathematicum},
pages = {67--130},
publisher = {mathdoc},
volume = {93},
number = {1},
year = {2002},
doi = {10.4064/cm93-1-7},
language = {fr},
url = {http://geodesic.mathdoc.fr/articles/10.4064/cm93-1-7/}
}
TY - JOUR AU - Piotr Malicki AU - Andrzej Skowro/nski AU - Bertha Tomé TI - Indecomposable modules in coils JO - Colloquium Mathematicum PY - 2002 SP - 67 EP - 130 VL - 93 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.4064/cm93-1-7/ DO - 10.4064/cm93-1-7 LA - fr ID - 10_4064_cm93_1_7 ER -
Piotr Malicki; Andrzej Skowro/nski; Bertha Tomé. Indecomposable modules in coils. Colloquium Mathematicum, Tome 93 (2002) no. 1, pp. 67-130. doi: 10.4064/cm93-1-7
Cité par Sources :