On mth order Bernoulli polynomials of degree m that are Eisenstein
Colloquium Mathematicum, Tome 93 (2002) no. 1, pp. 21-26.

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

This paper deals with the irreducibility of the $m$th order Bernoulli polynomials of degree $m$. As $m$ tends to infinity, Eisenstein's criterion is shown to imply irreducibility for asymptotically $> 1/5$ of these polynomials.
DOI : 10.4064/cm93-1-3
Keywords: paper deals irreducibility mth order bernoulli polynomials degree tends infinity eisensteins criterion shown imply irreducibility asymptotically these polynomials

Arnold Adelberg 1 ; Michael Filaseta 2

1 Department of Mathematics Grinnell College Grinnell, IA 50112, U.S.A.
2 Mathematics Department University of South Carolina Columbia, SC 29208, U.S.A.
@article{10_4064_cm93_1_3,
     author = {Arnold Adelberg and Michael Filaseta},
     title = {On  mth order {Bernoulli} polynomials of degree m
 that are {Eisenstein}},
     journal = {Colloquium Mathematicum},
     pages = {21--26},
     publisher = {mathdoc},
     volume = {93},
     number = {1},
     year = {2002},
     doi = {10.4064/cm93-1-3},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/cm93-1-3/}
}
TY  - JOUR
AU  - Arnold Adelberg
AU  - Michael Filaseta
TI  - On  mth order Bernoulli polynomials of degree m
 that are Eisenstein
JO  - Colloquium Mathematicum
PY  - 2002
SP  - 21
EP  - 26
VL  - 93
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/cm93-1-3/
DO  - 10.4064/cm93-1-3
LA  - en
ID  - 10_4064_cm93_1_3
ER  - 
%0 Journal Article
%A Arnold Adelberg
%A Michael Filaseta
%T On  mth order Bernoulli polynomials of degree m
 that are Eisenstein
%J Colloquium Mathematicum
%D 2002
%P 21-26
%V 93
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/cm93-1-3/
%R 10.4064/cm93-1-3
%G en
%F 10_4064_cm93_1_3
Arnold Adelberg; Michael Filaseta. On  mth order Bernoulli polynomials of degree m
 that are Eisenstein. Colloquium Mathematicum, Tome 93 (2002) no. 1, pp. 21-26. doi : 10.4064/cm93-1-3. http://geodesic.mathdoc.fr/articles/10.4064/cm93-1-3/

Cité par Sources :