On mth order Bernoulli polynomials of degree m
that are Eisenstein
Colloquium Mathematicum, Tome 93 (2002) no. 1, pp. 21-26
Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences
This paper deals with the irreducibility of the $m$th order Bernoulli polynomials of degree $m$. As $m$ tends to infinity, Eisenstein's criterion is shown to imply irreducibility for asymptotically $> 1/5$ of these polynomials.
Keywords:
paper deals irreducibility mth order bernoulli polynomials degree tends infinity eisensteins criterion shown imply irreducibility asymptotically these polynomials
Affiliations des auteurs :
Arnold Adelberg 1 ; Michael Filaseta 2
@article{10_4064_cm93_1_3,
author = {Arnold Adelberg and Michael Filaseta},
title = {On mth order {Bernoulli} polynomials of degree m
that are {Eisenstein}},
journal = {Colloquium Mathematicum},
pages = {21--26},
publisher = {mathdoc},
volume = {93},
number = {1},
year = {2002},
doi = {10.4064/cm93-1-3},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/cm93-1-3/}
}
TY - JOUR AU - Arnold Adelberg AU - Michael Filaseta TI - On mth order Bernoulli polynomials of degree m that are Eisenstein JO - Colloquium Mathematicum PY - 2002 SP - 21 EP - 26 VL - 93 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.4064/cm93-1-3/ DO - 10.4064/cm93-1-3 LA - en ID - 10_4064_cm93_1_3 ER -
Arnold Adelberg; Michael Filaseta. On mth order Bernoulli polynomials of degree m that are Eisenstein. Colloquium Mathematicum, Tome 93 (2002) no. 1, pp. 21-26. doi: 10.4064/cm93-1-3
Cité par Sources :