$L^{p}({\Bbb R}^{n})$ bounds for
commutators of convolution operators
Colloquium Mathematicum, Tome 93 (2002) no. 1, pp. 11-20
Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences
The $L^p({\mathbb R}^{n})$ boundedness is established for commutators generated by $\mathop {\rm BMO}\nolimits ({\mathbb R}^{n})$ functions and convolution operators whose kernels satisfy certain Fourier transform estimates. As an application, a new result about the $L^p({\mathbb R}^{n})$ boundedness is obtained for commutators of homogeneous singular integral operators whose kernels satisfy the Grafakos–Stefanov condition.
Keywords:
mathbb boundedness established commutators generated mathop bmo nolimits mathbb functions convolution operators whose kernels satisfy certain fourier transform estimates application result about mathbb boundedness obtained commutators homogeneous singular integral operators whose kernels satisfy grafakos stefanov condition
Affiliations des auteurs :
Guoen Hu 1 ; Qiyu Sun 2 ; Xin Wang 1
@article{10_4064_cm93_1_2,
author = {Guoen Hu and Qiyu Sun and Xin Wang},
title = {$L^{p}({\Bbb R}^{n})$ bounds for
commutators of convolution operators},
journal = {Colloquium Mathematicum},
pages = {11--20},
publisher = {mathdoc},
volume = {93},
number = {1},
year = {2002},
doi = {10.4064/cm93-1-2},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/cm93-1-2/}
}
TY - JOUR
AU - Guoen Hu
AU - Qiyu Sun
AU - Xin Wang
TI - $L^{p}({\Bbb R}^{n})$ bounds for
commutators of convolution operators
JO - Colloquium Mathematicum
PY - 2002
SP - 11
EP - 20
VL - 93
IS - 1
PB - mathdoc
UR - http://geodesic.mathdoc.fr/articles/10.4064/cm93-1-2/
DO - 10.4064/cm93-1-2
LA - en
ID - 10_4064_cm93_1_2
ER -
Guoen Hu; Qiyu Sun; Xin Wang. $L^{p}({\Bbb R}^{n})$ bounds for
commutators of convolution operators. Colloquium Mathematicum, Tome 93 (2002) no. 1, pp. 11-20. doi: 10.4064/cm93-1-2
Cité par Sources :