On prime values of reducible quadratic polynomials
Colloquium Mathematicum, Tome 93 (2002) no. 1, pp. 151-154

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

It is shown that Dickson's Conjecture about primes in linear polynomials implies that if $f$ is a reducible quadratic polynomial with integral coefficients and non-zero discriminant then for every $r$ there exists an integer $N_r$ such that the polynomial $f(X)/N_r$ represents at least $r$ distinct primes.
DOI : 10.4064/cm93-1-10
Keywords: shown dicksons conjecture about primes linear polynomials implies reducible quadratic polynomial integral coefficients non zero discriminant every there exists integer polynomial represents least distinct primes

W. Narkiewicz 1 ; T. Pezda 2

1 Institute of Mathematics Wrocław University Plac Grunwaldzki 2/4 50-384 Wrocław, Poland
2 Institute of Mathematics Wrocław University Plac Grunwaldzki 2/4 50-384 Wroc/law, Poland
@article{10_4064_cm93_1_10,
     author = {W. Narkiewicz and T. Pezda},
     title = {On prime values of reducible quadratic polynomials},
     journal = {Colloquium Mathematicum},
     pages = {151--154},
     publisher = {mathdoc},
     volume = {93},
     number = {1},
     year = {2002},
     doi = {10.4064/cm93-1-10},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/cm93-1-10/}
}
TY  - JOUR
AU  - W. Narkiewicz
AU  - T. Pezda
TI  - On prime values of reducible quadratic polynomials
JO  - Colloquium Mathematicum
PY  - 2002
SP  - 151
EP  - 154
VL  - 93
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/cm93-1-10/
DO  - 10.4064/cm93-1-10
LA  - en
ID  - 10_4064_cm93_1_10
ER  - 
%0 Journal Article
%A W. Narkiewicz
%A T. Pezda
%T On prime values of reducible quadratic polynomials
%J Colloquium Mathematicum
%D 2002
%P 151-154
%V 93
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/cm93-1-10/
%R 10.4064/cm93-1-10
%G en
%F 10_4064_cm93_1_10
W. Narkiewicz; T. Pezda. On prime values of reducible quadratic polynomials. Colloquium Mathematicum, Tome 93 (2002) no. 1, pp. 151-154. doi: 10.4064/cm93-1-10

Cité par Sources :