On prime values of reducible quadratic polynomials
Colloquium Mathematicum, Tome 93 (2002) no. 1, pp. 151-154.

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

It is shown that Dickson's Conjecture about primes in linear polynomials implies that if $f$ is a reducible quadratic polynomial with integral coefficients and non-zero discriminant then for every $r$ there exists an integer $N_r$ such that the polynomial $f(X)/N_r$ represents at least $r$ distinct primes.
DOI : 10.4064/cm93-1-10
Keywords: shown dicksons conjecture about primes linear polynomials implies reducible quadratic polynomial integral coefficients non zero discriminant every there exists integer polynomial represents least distinct primes

W. Narkiewicz 1 ; T. Pezda 2

1 Institute of Mathematics Wrocław University Plac Grunwaldzki 2/4 50-384 Wrocław, Poland
2 Institute of Mathematics Wrocław University Plac Grunwaldzki 2/4 50-384 Wroc/law, Poland
@article{10_4064_cm93_1_10,
     author = {W. Narkiewicz and T. Pezda},
     title = {On prime values of reducible quadratic polynomials},
     journal = {Colloquium Mathematicum},
     pages = {151--154},
     publisher = {mathdoc},
     volume = {93},
     number = {1},
     year = {2002},
     doi = {10.4064/cm93-1-10},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/cm93-1-10/}
}
TY  - JOUR
AU  - W. Narkiewicz
AU  - T. Pezda
TI  - On prime values of reducible quadratic polynomials
JO  - Colloquium Mathematicum
PY  - 2002
SP  - 151
EP  - 154
VL  - 93
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/cm93-1-10/
DO  - 10.4064/cm93-1-10
LA  - en
ID  - 10_4064_cm93_1_10
ER  - 
%0 Journal Article
%A W. Narkiewicz
%A T. Pezda
%T On prime values of reducible quadratic polynomials
%J Colloquium Mathematicum
%D 2002
%P 151-154
%V 93
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/cm93-1-10/
%R 10.4064/cm93-1-10
%G en
%F 10_4064_cm93_1_10
W. Narkiewicz; T. Pezda. On prime values of reducible quadratic polynomials. Colloquium Mathematicum, Tome 93 (2002) no. 1, pp. 151-154. doi : 10.4064/cm93-1-10. http://geodesic.mathdoc.fr/articles/10.4064/cm93-1-10/

Cité par Sources :