Hyers–Ulam stability for a nonlinear iterative equation
Colloquium Mathematicum, Tome 93 (2002) no. 1, pp. 1-9.

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

We discuss the Hyers–Ulam stability of the nonlinear iterative equation $G(f^{n_1}(x),\ldots ,f^{n_k}(x))=F(x)$. By constructing uniformly convergent sequence of functions we prove that this equation has a unique solution near its approximate solution.
DOI : 10.4064/cm93-1-1
Keywords: discuss hyers ulam stability nonlinear iterative equation ldots constructing uniformly convergent sequence functions prove equation has unique solution near its approximate solution

Bing Xu 1 ; Weinian Zhang 2

1 Department of Mathematics Sichuan University Chengdu, Sichuan 610064 P.R. China
2 Department of Mathematics Sichuan University Chengdu, Sichuan 610064, P.R. China
@article{10_4064_cm93_1_1,
     author = {Bing Xu and Weinian Zhang},
     title = {Hyers{\textendash}Ulam stability
 for a nonlinear iterative equation},
     journal = {Colloquium Mathematicum},
     pages = {1--9},
     publisher = {mathdoc},
     volume = {93},
     number = {1},
     year = {2002},
     doi = {10.4064/cm93-1-1},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/cm93-1-1/}
}
TY  - JOUR
AU  - Bing Xu
AU  - Weinian Zhang
TI  - Hyers–Ulam stability
 for a nonlinear iterative equation
JO  - Colloquium Mathematicum
PY  - 2002
SP  - 1
EP  - 9
VL  - 93
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/cm93-1-1/
DO  - 10.4064/cm93-1-1
LA  - en
ID  - 10_4064_cm93_1_1
ER  - 
%0 Journal Article
%A Bing Xu
%A Weinian Zhang
%T Hyers–Ulam stability
 for a nonlinear iterative equation
%J Colloquium Mathematicum
%D 2002
%P 1-9
%V 93
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/cm93-1-1/
%R 10.4064/cm93-1-1
%G en
%F 10_4064_cm93_1_1
Bing Xu; Weinian Zhang. Hyers–Ulam stability
 for a nonlinear iterative equation. Colloquium Mathematicum, Tome 93 (2002) no. 1, pp. 1-9. doi : 10.4064/cm93-1-1. http://geodesic.mathdoc.fr/articles/10.4064/cm93-1-1/

Cité par Sources :