Generalization of a theorem of Steinhaus
Colloquium Mathematicum, Tome 92 (2002) no. 2, pp. 257-266.

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

We present a multidimensional version of the Three Gap Theorem of Steinhaus, proving that the number of the so-called primitive arcs is bounded in any dimension.
DOI : 10.4064/cm92-2-9
Keywords: present multidimensional version three gap theorem steinhaus proving number so called primitive arcs bounded dimension

C. Cobeli 1 ; G. Groza 2 ; M. Vâjâitu 1 ; A. Zaharescu 3

1 Institute of Mathematics of the Romanian Academy P.O. Box 1-764 Bucureşti 70700, Romania
2 Technical University of Civil Engineering Lacul Tei 124 Bucureşti 72302, Romania
3 Department of Mathematics University of Illinois at Urbana-Champaign 1409 W. Green St. Urbana, IL 61801, U.S.A.
@article{10_4064_cm92_2_9,
     author = {C. Cobeli and G. Groza and M. V\^aj\^aitu and A. Zaharescu},
     title = {Generalization of a theorem of {Steinhaus}},
     journal = {Colloquium Mathematicum},
     pages = {257--266},
     publisher = {mathdoc},
     volume = {92},
     number = {2},
     year = {2002},
     doi = {10.4064/cm92-2-9},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/cm92-2-9/}
}
TY  - JOUR
AU  - C. Cobeli
AU  - G. Groza
AU  - M. Vâjâitu
AU  - A. Zaharescu
TI  - Generalization of a theorem of Steinhaus
JO  - Colloquium Mathematicum
PY  - 2002
SP  - 257
EP  - 266
VL  - 92
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/cm92-2-9/
DO  - 10.4064/cm92-2-9
LA  - en
ID  - 10_4064_cm92_2_9
ER  - 
%0 Journal Article
%A C. Cobeli
%A G. Groza
%A M. Vâjâitu
%A A. Zaharescu
%T Generalization of a theorem of Steinhaus
%J Colloquium Mathematicum
%D 2002
%P 257-266
%V 92
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/cm92-2-9/
%R 10.4064/cm92-2-9
%G en
%F 10_4064_cm92_2_9
C. Cobeli; G. Groza; M. Vâjâitu; A. Zaharescu. Generalization of a theorem of Steinhaus. Colloquium Mathematicum, Tome 92 (2002) no. 2, pp. 257-266. doi : 10.4064/cm92-2-9. http://geodesic.mathdoc.fr/articles/10.4064/cm92-2-9/

Cité par Sources :