M-bases in spaces of continuous functions on ordinals
Colloquium Mathematicum, Tome 92 (2002) no. 2, pp. 179-187.

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

We prove, among other things, that the space $C[0,\omega _2]$ has no countably norming Markushevich basis. This answers a question asked by G.~Alexandrov and A. Plichko.
DOI : 10.4064/cm92-2-3
Keywords: prove among other things space omega has countably norming markushevich basis answers question asked alexandrov plichko

Ondrej F. K. Kalenda 1

1 Department of Mathematical Analysis Faculty of Mathematics and Physics Charles University Sokolovská 83 186 75 Praha 8, Czech Republic
@article{10_4064_cm92_2_3,
     author = {Ondrej F. K. Kalenda},
     title = {M-bases in spaces of continuous
functions on ordinals},
     journal = {Colloquium Mathematicum},
     pages = {179--187},
     publisher = {mathdoc},
     volume = {92},
     number = {2},
     year = {2002},
     doi = {10.4064/cm92-2-3},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/cm92-2-3/}
}
TY  - JOUR
AU  - Ondrej F. K. Kalenda
TI  - M-bases in spaces of continuous
functions on ordinals
JO  - Colloquium Mathematicum
PY  - 2002
SP  - 179
EP  - 187
VL  - 92
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/cm92-2-3/
DO  - 10.4064/cm92-2-3
LA  - en
ID  - 10_4064_cm92_2_3
ER  - 
%0 Journal Article
%A Ondrej F. K. Kalenda
%T M-bases in spaces of continuous
functions on ordinals
%J Colloquium Mathematicum
%D 2002
%P 179-187
%V 92
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/cm92-2-3/
%R 10.4064/cm92-2-3
%G en
%F 10_4064_cm92_2_3
Ondrej F. K. Kalenda. M-bases in spaces of continuous
functions on ordinals. Colloquium Mathematicum, Tome 92 (2002) no. 2, pp. 179-187. doi : 10.4064/cm92-2-3. http://geodesic.mathdoc.fr/articles/10.4064/cm92-2-3/

Cité par Sources :