Blow up for a completely coupled Fujita
type reaction-diffusion system
Colloquium Mathematicum, Tome 92 (2002) no. 1, pp. 87-96
Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences
This paper provides blow up results of Fujita type for a reaction-diffusion system of 3 equations in the form $u_t -{\mit \Delta } (a_{11}u)=h(t,x)| v | ^p,$ $v_t -{\mit \Delta } (a_{21}u)-{\mit \Delta } (a_{22}v)=k(t,x)| w | ^q,$ $w_t -{\mit \Delta } (a_{31}u)-{\mit \Delta }(a_{32}v) -{\mit \Delta } (a_{33}w)=l(t,x)| u | ^r, $ for $x\in {\mathbb R}^N$, $t>0$, $p>0$, $q>0,$ $r>0$, $a_{ij}=a_{ij}(t,x,u,v)$, under initial conditions $u(0,x)= u_{0}(x), v(0,x)= v_{0}(x), w(0,x)= w_{0}(x)$ for $x\in {\mathbb R}^N$, where $u_{0}, v_{0}, w_{0}$ are nonnegative, continuous and bounded functions. Subject to conditions on dependence on the parameters $p, q, r, N$ and the growth of the functions $h, k, l$ at infinity, we prove finite blow up time for every solution of the above system, generalizing results of H. Fujita for the scalar Cauchy problem, of M. Escobedo and M. A. Herrero, of Fila, Levine and Uda, and of J. Renc/lawowicz for systems.
Keywords:
paper provides blow results fujita type reaction diffusion system equations form mit delta mit delta mit delta mit delta mit delta mit delta mathbb v under initial conditions mathbb where nonnegative continuous bounded functions subject conditions dependence parameters growth functions infinity prove finite blow time every solution above system generalizing results fujita scalar cauchy problem escobedo herrero fila levine uda renc lawowicz systems
Affiliations des auteurs :
Noureddine Igbida 1 ; Mokhtar Kirane 2
@article{10_4064_cm92_1_8,
author = {Noureddine Igbida and Mokhtar Kirane},
title = {Blow up for a completely coupled {Fujita
type} reaction-diffusion system},
journal = {Colloquium Mathematicum},
pages = {87--96},
publisher = {mathdoc},
volume = {92},
number = {1},
year = {2002},
doi = {10.4064/cm92-1-8},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/cm92-1-8/}
}
TY - JOUR AU - Noureddine Igbida AU - Mokhtar Kirane TI - Blow up for a completely coupled Fujita type reaction-diffusion system JO - Colloquium Mathematicum PY - 2002 SP - 87 EP - 96 VL - 92 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.4064/cm92-1-8/ DO - 10.4064/cm92-1-8 LA - en ID - 10_4064_cm92_1_8 ER -
%0 Journal Article %A Noureddine Igbida %A Mokhtar Kirane %T Blow up for a completely coupled Fujita type reaction-diffusion system %J Colloquium Mathematicum %D 2002 %P 87-96 %V 92 %N 1 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.4064/cm92-1-8/ %R 10.4064/cm92-1-8 %G en %F 10_4064_cm92_1_8
Noureddine Igbida; Mokhtar Kirane. Blow up for a completely coupled Fujita type reaction-diffusion system. Colloquium Mathematicum, Tome 92 (2002) no. 1, pp. 87-96. doi: 10.4064/cm92-1-8
Cité par Sources :