The set of points at which a morphism of affine
schemes is not finite
Colloquium Mathematicum, Tome 92 (2002) no. 1, pp. 59-66
Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences
Assume that $X,Y$ are integral noetherian affine schemes. Let $f:X\rightarrow Y$ be a dominant, generically finite morphism of finite type. We show that the set of points at which the morphism $f$ is not finite is either empty or a hypersurface. An example is given to show that this is no longer true in the non-noetherian case.
Keywords:
assume integral noetherian affine schemes rightarrow dominant generically finite morphism finite type set points which morphism finite either empty hypersurface example given longer non noetherian
Affiliations des auteurs :
Zbigniew Jelonek 1 ; Marek Kara/s 2
@article{10_4064_cm92_1_5,
author = {Zbigniew Jelonek and Marek Kara/s},
title = {The set of points at which a morphism of affine
schemes is not finite},
journal = {Colloquium Mathematicum},
pages = {59--66},
publisher = {mathdoc},
volume = {92},
number = {1},
year = {2002},
doi = {10.4064/cm92-1-5},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/cm92-1-5/}
}
TY - JOUR AU - Zbigniew Jelonek AU - Marek Kara/s TI - The set of points at which a morphism of affine schemes is not finite JO - Colloquium Mathematicum PY - 2002 SP - 59 EP - 66 VL - 92 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.4064/cm92-1-5/ DO - 10.4064/cm92-1-5 LA - en ID - 10_4064_cm92_1_5 ER -
Zbigniew Jelonek; Marek Kara/s. The set of points at which a morphism of affine schemes is not finite. Colloquium Mathematicum, Tome 92 (2002) no. 1, pp. 59-66. doi: 10.4064/cm92-1-5
Cité par Sources :