Unconditional biorthogonal wavelet bases in $L^p({\Bbb R}^d)$
Colloquium Mathematicum, Tome 92 (2002) no. 1, pp. 19-34
Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences
We prove that a biorthogonal wavelet basis yields an unconditional basis in all spaces $L^{p}({\mathbb R}^d)$ with $1 p \infty $, provided the biorthogonal wavelet set functions satisfy weak decay conditions. The biorthogonal wavelet set is associated with an arbitrary dilation matrix in any dimension.
Keywords:
prove biorthogonal wavelet basis yields unconditional basis spaces mathbb infty provided biorthogonal wavelet set functions satisfy weak decay conditions biorthogonal wavelet set associated arbitrary dilation matrix dimension
Affiliations des auteurs :
Waldemar Pompe 1
@article{10_4064_cm92_1_2,
author = {Waldemar Pompe},
title = {Unconditional biorthogonal wavelet bases in $L^p({\Bbb R}^d)$},
journal = {Colloquium Mathematicum},
pages = {19--34},
publisher = {mathdoc},
volume = {92},
number = {1},
year = {2002},
doi = {10.4064/cm92-1-2},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/cm92-1-2/}
}
Waldemar Pompe. Unconditional biorthogonal wavelet bases in $L^p({\Bbb R}^d)$. Colloquium Mathematicum, Tome 92 (2002) no. 1, pp. 19-34. doi: 10.4064/cm92-1-2
Cité par Sources :