The algebra of the subspace semigroup of $M_{2}({\Bbb F}_q)$
Colloquium Mathematicum, Tome 92 (2002) no. 1, pp. 131-139.

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

The semigroup $S=S(M_{2}({\mathbb F}_{q}))$ of subspaces of the algebra $M_{2}({\mathbb F}_{q})$ of $2\times 2$ matrices over a finite field ${\mathbb F}_{q}$ is studied. The ideal structure of $S$, the regular $\cal J$-classes of $S$ and the structure of the complex semigroup algebra ${\mathbb C}[S]$ are described.
DOI : 10.4064/cm92-1-11
Keywords: semigroup mathbb subspaces algebra mathbb times matrices finite field mathbb studied ideal structure regular cal j classes structure complex semigroup algebra mathbb described

Jan Okni/nski 1

1 Institute of Mathematics Warsaw University Banacha 2 02-097 Warszawa, Poland
@article{10_4064_cm92_1_11,
     author = {Jan Okni/nski},
     title = {The algebra of the subspace semigroup of $M_{2}({\Bbb F}_q)$},
     journal = {Colloquium Mathematicum},
     pages = {131--139},
     publisher = {mathdoc},
     volume = {92},
     number = {1},
     year = {2002},
     doi = {10.4064/cm92-1-11},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/cm92-1-11/}
}
TY  - JOUR
AU  - Jan Okni/nski
TI  - The algebra of the subspace semigroup of $M_{2}({\Bbb F}_q)$
JO  - Colloquium Mathematicum
PY  - 2002
SP  - 131
EP  - 139
VL  - 92
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/cm92-1-11/
DO  - 10.4064/cm92-1-11
LA  - en
ID  - 10_4064_cm92_1_11
ER  - 
%0 Journal Article
%A Jan Okni/nski
%T The algebra of the subspace semigroup of $M_{2}({\Bbb F}_q)$
%J Colloquium Mathematicum
%D 2002
%P 131-139
%V 92
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/cm92-1-11/
%R 10.4064/cm92-1-11
%G en
%F 10_4064_cm92_1_11
Jan Okni/nski. The algebra of the subspace semigroup of $M_{2}({\Bbb F}_q)$. Colloquium Mathematicum, Tome 92 (2002) no. 1, pp. 131-139. doi : 10.4064/cm92-1-11. http://geodesic.mathdoc.fr/articles/10.4064/cm92-1-11/

Cité par Sources :