Estimates with global range for
oscillatory integrals with concave phase
Colloquium Mathematicum, Tome 91 (2002) no. 2, pp. 157-165
Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences
We consider the maximal function $\|(S^af)[x]\|_{L^\infty[-1,1]}$
where $(S^af) (t)^\wedge (\xi) = e
^ {i t |\xi| ^ a} \widehat f(\xi)$ and $0 a 1$. We prove
the global estimate
$$
\| {S ^ a f}\|_ {L ^ 2 (\mathbb R , L ^ \infty [ -1 ,
1 ])} \leq C \| f \| _{H^ s(\mathbb R)}, \quad\ s > a/4,
$$
with $C$ independent of $f$. This is known to be almost sharp
with respect to the Sobolev regularity $s$.
Keywords:
consider maximal function infty where wedge widehat prove global estimate mathbb infty leq mathbb quad independent known almost sharp respect sobolev regularity
Affiliations des auteurs :
Bjorn Gabriel Walther 1
@article{10_4064_cm91_2_1,
author = {Bjorn Gabriel Walther},
title = {Estimates with global range for
oscillatory integrals with concave phase},
journal = {Colloquium Mathematicum},
pages = {157--165},
publisher = {mathdoc},
volume = {91},
number = {2},
year = {2002},
doi = {10.4064/cm91-2-1},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/cm91-2-1/}
}
TY - JOUR AU - Bjorn Gabriel Walther TI - Estimates with global range for oscillatory integrals with concave phase JO - Colloquium Mathematicum PY - 2002 SP - 157 EP - 165 VL - 91 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.4064/cm91-2-1/ DO - 10.4064/cm91-2-1 LA - en ID - 10_4064_cm91_2_1 ER -
Bjorn Gabriel Walther. Estimates with global range for oscillatory integrals with concave phase. Colloquium Mathematicum, Tome 91 (2002) no. 2, pp. 157-165. doi: 10.4064/cm91-2-1
Cité par Sources :