Hyperspaces of universal curves
and $2$-cells are true $F_{\sigma \delta }$-sets
Colloquium Mathematicum, Tome 91 (2002) no. 1, pp. 91-98
Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences
It is shown that the following hyperspaces, endowed with the Hausdorff metric, are true absolute $F_{\sigma \delta }$-sets:
(1) ${\cal M}^2_1(X)$ of Sierpiński universal curves in a locally compact metric space $X$, provided ${\cal M}^2_1(X)\not =\emptyset $;
(2) ${\cal M}^3_1(X)$ of Menger universal curves in a locally compact metric space $X$, provided ${\cal M}^3_1(X)\not =\emptyset $;
(3) 2-cells in the plane.
Keywords:
shown following hyperspaces endowed hausdorff metric absolute sigma delta sets cal sierpi ski universal curves locally compact metric space provided cal emptyset cal menger universal curves locally compact metric space provided cal emptyset cells plane
Affiliations des auteurs :
Paweł Krupski 1
@article{10_4064_cm91_1_7,
author = {Pawe{\l} Krupski},
title = {Hyperspaces of universal curves
and $2$-cells are true $F_{\sigma \delta }$-sets},
journal = {Colloquium Mathematicum},
pages = {91--98},
publisher = {mathdoc},
volume = {91},
number = {1},
year = {2002},
doi = {10.4064/cm91-1-7},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/cm91-1-7/}
}
TY - JOUR
AU - Paweł Krupski
TI - Hyperspaces of universal curves
and $2$-cells are true $F_{\sigma \delta }$-sets
JO - Colloquium Mathematicum
PY - 2002
SP - 91
EP - 98
VL - 91
IS - 1
PB - mathdoc
UR - http://geodesic.mathdoc.fr/articles/10.4064/cm91-1-7/
DO - 10.4064/cm91-1-7
LA - en
ID - 10_4064_cm91_1_7
ER -
Paweł Krupski. Hyperspaces of universal curves
and $2$-cells are true $F_{\sigma \delta }$-sets. Colloquium Mathematicum, Tome 91 (2002) no. 1, pp. 91-98. doi: 10.4064/cm91-1-7
Cité par Sources :