Liftings of 1-forms to $(J^rT^*)^*$
Colloquium Mathematicum, Tome 91 (2002) no. 1, pp. 69-77
Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences
Let $J^rT^*M$ be the $r$-jet prolongation of the cotangent bundle of an $n$-dimensional manifold $M$ and let $(J^rT^*M)^*$ be the dual vector bundle. For natural numbers $r$ and $n$, a complete classification of all linear natural operators lifting $1$-forms from $M$ to $1$-forms on $(J^rT^*M)^*$ is given.
Keywords:
*m r jet prolongation cotangent bundle n dimensional manifold *m * dual vector bundle natural numbers complete classification linear natural operators lifting forms forms *m * given
Affiliations des auteurs :
Włodzimierz M. Mikulski 1
@article{10_4064_cm91_1_5,
author = {W{\l}odzimierz M. Mikulski},
title = {Liftings of 1-forms to $(J^rT^*)^*$},
journal = {Colloquium Mathematicum},
pages = {69--77},
publisher = {mathdoc},
volume = {91},
number = {1},
year = {2002},
doi = {10.4064/cm91-1-5},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/cm91-1-5/}
}
Włodzimierz M. Mikulski. Liftings of 1-forms to $(J^rT^*)^*$. Colloquium Mathematicum, Tome 91 (2002) no. 1, pp. 69-77. doi: 10.4064/cm91-1-5
Cité par Sources :