Liftings of 1-forms to $(J^rT^*)^*$
Colloquium Mathematicum, Tome 91 (2002) no. 1, pp. 69-77.

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

Let $J^rT^*M$ be the $r$-jet prolongation of the cotangent bundle of an $n$-dimensional manifold $M$ and let $(J^rT^*M)^*$ be the dual vector bundle. For natural numbers $r$ and $n$, a complete classification of all linear natural operators lifting $1$-forms from $M$ to $1$-forms on $(J^rT^*M)^*$ is given.
DOI : 10.4064/cm91-1-5
Keywords: *m r jet prolongation cotangent bundle n dimensional manifold *m * dual vector bundle natural numbers complete classification linear natural operators lifting forms forms *m * given

Włodzimierz M. Mikulski 1

1 Institute of Mathematics Jagiellonian University Reymonta 4 30-059 Kraków, Poland
@article{10_4064_cm91_1_5,
     author = {W{\l}odzimierz M. Mikulski},
     title = {Liftings of 1-forms to $(J^rT^*)^*$},
     journal = {Colloquium Mathematicum},
     pages = {69--77},
     publisher = {mathdoc},
     volume = {91},
     number = {1},
     year = {2002},
     doi = {10.4064/cm91-1-5},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/cm91-1-5/}
}
TY  - JOUR
AU  - Włodzimierz M. Mikulski
TI  - Liftings of 1-forms to $(J^rT^*)^*$
JO  - Colloquium Mathematicum
PY  - 2002
SP  - 69
EP  - 77
VL  - 91
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/cm91-1-5/
DO  - 10.4064/cm91-1-5
LA  - en
ID  - 10_4064_cm91_1_5
ER  - 
%0 Journal Article
%A Włodzimierz M. Mikulski
%T Liftings of 1-forms to $(J^rT^*)^*$
%J Colloquium Mathematicum
%D 2002
%P 69-77
%V 91
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/cm91-1-5/
%R 10.4064/cm91-1-5
%G en
%F 10_4064_cm91_1_5
Włodzimierz M. Mikulski. Liftings of 1-forms to $(J^rT^*)^*$. Colloquium Mathematicum, Tome 91 (2002) no. 1, pp. 69-77. doi : 10.4064/cm91-1-5. http://geodesic.mathdoc.fr/articles/10.4064/cm91-1-5/

Cité par Sources :