Spectral subspaces
and non-commutative Hilbert transforms
Colloquium Mathematicum, Tome 91 (2002) no. 1, pp. 9-27
Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences
Let $G$ be a locally compact abelian group and ${\mathcal M}$ be a semifinite von Neumann algebra with a faithful semifinite normal trace $\tau $. We study Hilbert transforms associated with $G$-flows on ${\mathcal M}$ and closed semigroups ${\mit\Sigma }$ of $\widehat G$ satisfying the condition ${\mit\Sigma } \cup (-{\mit\Sigma })=\widehat {G}$. We prove that Hilbert transforms on such closed semigroups satisfy a weak-type estimate and can be extended as linear maps from $L^1({\mathcal M},\tau )$ into $L^{1,\infty }({\mathcal M}, \tau )$. As an application, we obtain a Matsaev-type result for $p=1$: if $x$ is a quasi-nilpotent compact operator on a Hilbert space and $\mathop {\rm Im}\nolimits (x)$ belongs to the trace class then the singular values
$\{\mu _n(x)\}_{n=1}^\infty $ of $x$ are $O(1/n)$.
Keywords:
locally compact abelian group mathcal semifinite von neumann algebra faithful semifinite normal trace tau study hilbert transforms associated g flows mathcal closed semigroups mit sigma widehat satisfying condition mit sigma cup mit sigma widehat prove hilbert transforms closed semigroups satisfy weak type estimate extended linear maps mathcal tau infty mathcal tau application obtain matsaev type result quasi nilpotent compact operator hilbert space mathop nolimits belongs trace class singular values infty
Affiliations des auteurs :
Narcisse Randrianantoanina 1
@article{10_4064_cm91_1_2,
author = {Narcisse Randrianantoanina},
title = {Spectral subspaces
and non-commutative {Hilbert} transforms},
journal = {Colloquium Mathematicum},
pages = {9--27},
publisher = {mathdoc},
volume = {91},
number = {1},
year = {2002},
doi = {10.4064/cm91-1-2},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/cm91-1-2/}
}
TY - JOUR AU - Narcisse Randrianantoanina TI - Spectral subspaces and non-commutative Hilbert transforms JO - Colloquium Mathematicum PY - 2002 SP - 9 EP - 27 VL - 91 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.4064/cm91-1-2/ DO - 10.4064/cm91-1-2 LA - en ID - 10_4064_cm91_1_2 ER -
Narcisse Randrianantoanina. Spectral subspaces and non-commutative Hilbert transforms. Colloquium Mathematicum, Tome 91 (2002) no. 1, pp. 9-27. doi: 10.4064/cm91-1-2
Cité par Sources :