A general differentiation theorem
for multiparameter additive processes
Colloquium Mathematicum, Tome 91 (2002) no. 1, pp. 143-155
Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences
Let $(L,\| \cdot \| _{L})$ be a Banach lattice of equivalence classes of real-valued measurable functions on a $\sigma $-finite measure space and $T=\{ T(u):u=(u_{1}, \dots,u_{d})$, $u_{i}>0$, $1\leq i\leq d\} $ be a strongly continuous locally bounded $d$-dimensional semigroup of positive linear operators on $L$. Under suitable conditions on the Banach lattice $L$ we prove a general differentiation theorem for locally bounded $d$-dimensional processes in $L$ which are additive with respect to the semigroup $T$.
Keywords:
cdot banach lattice equivalence classes real valued measurable functions sigma finite measure space dots leq leq strongly continuous locally bounded d dimensional semigroup positive linear operators under suitable conditions banach lattice prove general differentiation theorem locally bounded d dimensional processes which additive respect semigroup
Affiliations des auteurs :
Ryotaro Sato 1
@article{10_4064_cm91_1_10,
author = {Ryotaro Sato},
title = {A general differentiation theorem
for multiparameter additive processes},
journal = {Colloquium Mathematicum},
pages = {143--155},
publisher = {mathdoc},
volume = {91},
number = {1},
year = {2002},
doi = {10.4064/cm91-1-10},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/cm91-1-10/}
}
TY - JOUR AU - Ryotaro Sato TI - A general differentiation theorem for multiparameter additive processes JO - Colloquium Mathematicum PY - 2002 SP - 143 EP - 155 VL - 91 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.4064/cm91-1-10/ DO - 10.4064/cm91-1-10 LA - en ID - 10_4064_cm91_1_10 ER -
Ryotaro Sato. A general differentiation theorem for multiparameter additive processes. Colloquium Mathematicum, Tome 91 (2002) no. 1, pp. 143-155. doi: 10.4064/cm91-1-10
Cité par Sources :