A version of the law of large numbers
Colloquium Mathematicum, Tome 90 (2001) no. 2, pp. 295-298
Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences
By the method of Rio [10], for a locally square integrable
periodic function $f$, we prove $ ( f(\mu _1 ^tx ) +
\dots+ f(\mu _n ^tx) )/n \to \int _0^1 f$ for
almost every $x$ and $t>0$.
Keywords:
method rio locally square integrable periodic function prove dots int almost every
Affiliations des auteurs :
Katusi Fukuyama 1
@article{10_4064_cm90_2_9,
author = {Katusi Fukuyama},
title = {A version of the law of large numbers},
journal = {Colloquium Mathematicum},
pages = {295--298},
publisher = {mathdoc},
volume = {90},
number = {2},
year = {2001},
doi = {10.4064/cm90-2-9},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/cm90-2-9/}
}
Katusi Fukuyama. A version of the law of large numbers. Colloquium Mathematicum, Tome 90 (2001) no. 2, pp. 295-298. doi: 10.4064/cm90-2-9
Cité par Sources :