$n$-functionality of graphs
Colloquium Mathematicum, Tome 90 (2001) no. 2, pp. 269-275.

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

We first characterize in a simple combinatorial way all finite graphs whose edges can be directed to form an $n$-functional digraph, for a fixed positive integer $n$. Next, we prove that the possibility of directing the edges of an infinite graph to form an $n$-functional digraph depends on its finite subgraphs only. These results generalize Ore's result for functional digraphs.
DOI : 10.4064/cm90-2-6
Keywords: first characterize simple combinatorial finite graphs whose edges directed form n functional digraph fixed positive integer prove possibility directing edges infinite graph form n functional digraph depends its finite subgraphs only these results generalize ores result functional digraphs

Konrad Pi/oro 1

1 Institute of Mathematics Warsaw University Banacha 2 02-097 Warszawa, Poland
@article{10_4064_cm90_2_6,
     author = {Konrad Pi/oro},
     title = {$n$-functionality of graphs},
     journal = {Colloquium Mathematicum},
     pages = {269--275},
     publisher = {mathdoc},
     volume = {90},
     number = {2},
     year = {2001},
     doi = {10.4064/cm90-2-6},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/cm90-2-6/}
}
TY  - JOUR
AU  - Konrad Pi/oro
TI  - $n$-functionality of graphs
JO  - Colloquium Mathematicum
PY  - 2001
SP  - 269
EP  - 275
VL  - 90
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/cm90-2-6/
DO  - 10.4064/cm90-2-6
LA  - en
ID  - 10_4064_cm90_2_6
ER  - 
%0 Journal Article
%A Konrad Pi/oro
%T $n$-functionality of graphs
%J Colloquium Mathematicum
%D 2001
%P 269-275
%V 90
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/cm90-2-6/
%R 10.4064/cm90-2-6
%G en
%F 10_4064_cm90_2_6
Konrad Pi/oro. $n$-functionality of graphs. Colloquium Mathematicum, Tome 90 (2001) no. 2, pp. 269-275. doi : 10.4064/cm90-2-6. http://geodesic.mathdoc.fr/articles/10.4064/cm90-2-6/

Cité par Sources :