On minimal generic submanifolds immersed in $S^{2m+1}$
Colloquium Mathematicum, Tome 90 (2001) no. 2, pp. 299-304.

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

We give a pinching theorem for a compact minimal generic submanifold with flat normal connection immersed in an odd-dimensional sphere with standard Sasakian structure.
DOI : 10.4064/cm90-2-10
Keywords: pinching theorem compact minimal generic submanifold flat normal connection immersed odd dimensional sphere standard sasakian structure

Masahiro Kon 1

1 Department of Mathematics Faculty of Education Hirosaki University Hirosaki, 036-8560 Japan
@article{10_4064_cm90_2_10,
     author = {Masahiro Kon},
     title = {On minimal generic submanifolds immersed in $S^{2m+1}$},
     journal = {Colloquium Mathematicum},
     pages = {299--304},
     publisher = {mathdoc},
     volume = {90},
     number = {2},
     year = {2001},
     doi = {10.4064/cm90-2-10},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/cm90-2-10/}
}
TY  - JOUR
AU  - Masahiro Kon
TI  - On minimal generic submanifolds immersed in $S^{2m+1}$
JO  - Colloquium Mathematicum
PY  - 2001
SP  - 299
EP  - 304
VL  - 90
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/cm90-2-10/
DO  - 10.4064/cm90-2-10
LA  - en
ID  - 10_4064_cm90_2_10
ER  - 
%0 Journal Article
%A Masahiro Kon
%T On minimal generic submanifolds immersed in $S^{2m+1}$
%J Colloquium Mathematicum
%D 2001
%P 299-304
%V 90
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/cm90-2-10/
%R 10.4064/cm90-2-10
%G en
%F 10_4064_cm90_2_10
Masahiro Kon. On minimal generic submanifolds immersed in $S^{2m+1}$. Colloquium Mathematicum, Tome 90 (2001) no. 2, pp. 299-304. doi : 10.4064/cm90-2-10. http://geodesic.mathdoc.fr/articles/10.4064/cm90-2-10/

Cité par Sources :