Generalized canonical algebras and standard stable tubes
Colloquium Mathematicum, Tome 90 (2001) no. 1, pp. 77-93.

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

We introduce a new wide class of finite-dimensional algebras which admit families of standard stable tubes (in the sense of Ringel [17]). In particular, we prove that there are many algebras of arbitrary nonzero (finite or infinite) global dimension whose Auslander–Reiten quivers admit faithful standard stable tubes.
DOI : 10.4064/cm90-1-7
Keywords: introduce wide class finite dimensional algebras which admit families standard stable tubes sense ringel particular prove there many algebras arbitrary nonzero finite infinite global dimension whose auslander reiten quivers admit faithful standard stable tubes

Andrzej Skowro/nski 1

1 Faculty of Mathematics and Computer Science Nicholas Copernicus University Chopina 12/18 87-100 Toruń, Poland
@article{10_4064_cm90_1_7,
     author = {Andrzej Skowro/nski},
     title = {Generalized canonical algebras
and standard stable tubes},
     journal = {Colloquium Mathematicum},
     pages = {77--93},
     publisher = {mathdoc},
     volume = {90},
     number = {1},
     year = {2001},
     doi = {10.4064/cm90-1-7},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/cm90-1-7/}
}
TY  - JOUR
AU  - Andrzej Skowro/nski
TI  - Generalized canonical algebras
and standard stable tubes
JO  - Colloquium Mathematicum
PY  - 2001
SP  - 77
EP  - 93
VL  - 90
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/cm90-1-7/
DO  - 10.4064/cm90-1-7
LA  - en
ID  - 10_4064_cm90_1_7
ER  - 
%0 Journal Article
%A Andrzej Skowro/nski
%T Generalized canonical algebras
and standard stable tubes
%J Colloquium Mathematicum
%D 2001
%P 77-93
%V 90
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/cm90-1-7/
%R 10.4064/cm90-1-7
%G en
%F 10_4064_cm90_1_7
Andrzej Skowro/nski. Generalized canonical algebras
and standard stable tubes. Colloquium Mathematicum, Tome 90 (2001) no. 1, pp. 77-93. doi : 10.4064/cm90-1-7. http://geodesic.mathdoc.fr/articles/10.4064/cm90-1-7/

Cité par Sources :