Weyl space forms and their submanifolds
Colloquium Mathematicum, Tome 89 (2001) no. 1, pp. 117-131.

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

We study the geometric structure of a Gauduchon manifold of constant curvature. We give a necessary and sufficient condition for a Gauduchon manifold to be a Gauduchon manifold of constant curvature, and we classify the Gauduchon manifolds of constant curvature. Next, we investigate Weyl submanifolds of such manifolds.
DOI : 10.4064/cm89-1-8
Keywords: study geometric structure gauduchon manifold constant curvature necessary sufficient condition gauduchon manifold gauduchon manifold constant curvature classify gauduchon manifolds constant curvature investigate weyl submanifolds manifolds

Fumio Narita 1

1 Department of Mathematics Akita National College of Technology Akita 011-8511, Japan
@article{10_4064_cm89_1_8,
     author = {Fumio Narita},
     title = {Weyl space forms and their submanifolds},
     journal = {Colloquium Mathematicum},
     pages = {117--131},
     publisher = {mathdoc},
     volume = {89},
     number = {1},
     year = {2001},
     doi = {10.4064/cm89-1-8},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/cm89-1-8/}
}
TY  - JOUR
AU  - Fumio Narita
TI  - Weyl space forms and their submanifolds
JO  - Colloquium Mathematicum
PY  - 2001
SP  - 117
EP  - 131
VL  - 89
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/cm89-1-8/
DO  - 10.4064/cm89-1-8
LA  - en
ID  - 10_4064_cm89_1_8
ER  - 
%0 Journal Article
%A Fumio Narita
%T Weyl space forms and their submanifolds
%J Colloquium Mathematicum
%D 2001
%P 117-131
%V 89
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/cm89-1-8/
%R 10.4064/cm89-1-8
%G en
%F 10_4064_cm89_1_8
Fumio Narita. Weyl space forms and their submanifolds. Colloquium Mathematicum, Tome 89 (2001) no. 1, pp. 117-131. doi : 10.4064/cm89-1-8. http://geodesic.mathdoc.fr/articles/10.4064/cm89-1-8/

Cité par Sources :