On ordered division rings
Colloquium Mathematicum, Tome 88 (2001) no. 2, pp. 263-271.

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

Prestel introduced a generalization of the notion of an ordering of a field, which is called a semiordering. Prestel's axioms for a semiordered field differ from the usual (Artin–Schreier) postulates in requiring only the closedness of the domain of positivity under $x\mapsto xa^2$ for non-zero $a$, in place of requiring that positive elements have a positive product. Our aim in this work is to study this type of ordering in the case of a division ring. We show that it actually behaves just as in the commutative case. Further, we show that the bounded subring associated with that ordering is a valuation ring which is preserved under conjugation, so one can associate with the semiordering a natural valuation.
DOI : 10.4064/cm88-2-8
Keywords: prestel introduced generalization notion ordering field which called semiordering prestels axioms semiordered field differ usual artin schreier postulates requiring only closedness domain positivity under mapsto non zero place requiring positive elements have positive product work study type ordering division ring actually behaves just commutative further bounded subring associated ordering valuation ring which preserved under conjugation associate semiordering natural valuation

Ismail M. Idris 1

1 Department of Mathematics Faculty of Science Ain-Shams University Cairo, Egypt
@article{10_4064_cm88_2_8,
     author = {Ismail M. Idris},
     title = {On ordered division rings},
     journal = {Colloquium Mathematicum},
     pages = {263--271},
     publisher = {mathdoc},
     volume = {88},
     number = {2},
     year = {2001},
     doi = {10.4064/cm88-2-8},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/cm88-2-8/}
}
TY  - JOUR
AU  - Ismail M. Idris
TI  - On ordered division rings
JO  - Colloquium Mathematicum
PY  - 2001
SP  - 263
EP  - 271
VL  - 88
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/cm88-2-8/
DO  - 10.4064/cm88-2-8
LA  - en
ID  - 10_4064_cm88_2_8
ER  - 
%0 Journal Article
%A Ismail M. Idris
%T On ordered division rings
%J Colloquium Mathematicum
%D 2001
%P 263-271
%V 88
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/cm88-2-8/
%R 10.4064/cm88-2-8
%G en
%F 10_4064_cm88_2_8
Ismail M. Idris. On ordered division rings. Colloquium Mathematicum, Tome 88 (2001) no. 2, pp. 263-271. doi : 10.4064/cm88-2-8. http://geodesic.mathdoc.fr/articles/10.4064/cm88-2-8/

Cité par Sources :