On the unimodal character of the frequency function of the largest prime factor
Colloquium Mathematicum, Tome 88 (2001) no. 2, pp. 159-174.

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

The main objective of this paper is to analyze the unimodal character of the frequency function of the largest prime factor. To do that, let $P(n)$ stand for the largest prime factor of $n$. Then define $f(x,p):=\#\{ n\le x\mid P(n)=p\} $. If $f(x,p)$ is considered as a function of $p$, for $2\le p\le x$, the primes in the interval $[2,x]$ belong to three intervals $I_1(x)=[2,v(x)]$, $I_2(x)=\mathopen ]v(x),w(x)\mathclose [$ and $I_3(x)=[w(x),x]$, with $v(x) w(x)$, such that $f(x,p)$ increases for $p\in I_1(x)$, reaches its maximum value in $I_2(x)$, in which interval it oscillates, and finally decreases for $p\in I_3(x)$. In fact, we show that $v(x)\ge \sqrt{\mathop {\rm log}\nolimits x}$ and $w(x)\le \sqrt{x}$. We also provide several conditions on primes $p\le q$ so that $f(x,p)\ge f(x,q)$.
DOI : 10.4064/cm88-2-1
Keywords: main objective paper analyze unimodal character frequency function largest prime factor stand largest prime factor define mid considered function primes interval belong three intervals mathopen mathclose increases reaches its maximum value which interval oscillates finally decreases sqrt mathop log nolimits sqrt provide several conditions primes

Jean-Marie De Koninck 1 ; Jason Pierre Sweeney 1

1 Département de Mathématiques et de Statistique Université Laval Québec G1K 7P4, Canada
@article{10_4064_cm88_2_1,
     author = {Jean-Marie De Koninck and Jason Pierre Sweeney},
     title = {On the unimodal character of the frequency
function of the largest prime factor},
     journal = {Colloquium Mathematicum},
     pages = {159--174},
     publisher = {mathdoc},
     volume = {88},
     number = {2},
     year = {2001},
     doi = {10.4064/cm88-2-1},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/cm88-2-1/}
}
TY  - JOUR
AU  - Jean-Marie De Koninck
AU  - Jason Pierre Sweeney
TI  - On the unimodal character of the frequency
function of the largest prime factor
JO  - Colloquium Mathematicum
PY  - 2001
SP  - 159
EP  - 174
VL  - 88
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/cm88-2-1/
DO  - 10.4064/cm88-2-1
LA  - en
ID  - 10_4064_cm88_2_1
ER  - 
%0 Journal Article
%A Jean-Marie De Koninck
%A Jason Pierre Sweeney
%T On the unimodal character of the frequency
function of the largest prime factor
%J Colloquium Mathematicum
%D 2001
%P 159-174
%V 88
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/cm88-2-1/
%R 10.4064/cm88-2-1
%G en
%F 10_4064_cm88_2_1
Jean-Marie De Koninck; Jason Pierre Sweeney. On the unimodal character of the frequency
function of the largest prime factor. Colloquium Mathematicum, Tome 88 (2001) no. 2, pp. 159-174. doi : 10.4064/cm88-2-1. http://geodesic.mathdoc.fr/articles/10.4064/cm88-2-1/

Cité par Sources :