On the unimodal character of the frequency
function of the largest prime factor
Colloquium Mathematicum, Tome 88 (2001) no. 2, pp. 159-174
Cet article a éte moissonné depuis la source Institute of Mathematics Polish Academy of Sciences
The main objective of this paper is to analyze the unimodal
character of the frequency function of the largest prime factor.
To do that, let $P(n)$ stand for the largest prime factor of
$n$. Then define $f(x,p):=\#\{ n\le x\mid
P(n)=p\} $. If $f(x,p)$ is considered as a
function of $p$, for $2\le p\le x$, the primes in the interval
$[2,x]$ belong to three intervals $I_1(x)=[2,v(x)]$,
$I_2(x)=\mathopen ]v(x),w(x)\mathclose [$ and $I_3(x)=[w(x),x]$,
with $v(x) w(x)$, such that $f(x,p)$ increases for $p\in
I_1(x)$, reaches its maximum value in $I_2(x)$, in which
interval it oscillates, and finally decreases for $p\in I_3(x)$.
In fact, we show that $v(x)\ge \sqrt{\mathop {\rm
log}\nolimits x}$ and $w(x)\le \sqrt{x}$.
We also provide several conditions on primes $p\le q$ so that
$f(x,p)\ge f(x,q)$.
Keywords:
main objective paper analyze unimodal character frequency function largest prime factor stand largest prime factor define mid considered function primes interval belong three intervals mathopen mathclose increases reaches its maximum value which interval oscillates finally decreases sqrt mathop log nolimits sqrt provide several conditions primes
Affiliations des auteurs :
Jean-Marie De Koninck 1 ; Jason Pierre Sweeney 1
@article{10_4064_cm88_2_1,
author = {Jean-Marie De Koninck and Jason Pierre Sweeney},
title = {On the unimodal character of the frequency
function of the largest prime factor},
journal = {Colloquium Mathematicum},
pages = {159--174},
year = {2001},
volume = {88},
number = {2},
doi = {10.4064/cm88-2-1},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/cm88-2-1/}
}
TY - JOUR AU - Jean-Marie De Koninck AU - Jason Pierre Sweeney TI - On the unimodal character of the frequency function of the largest prime factor JO - Colloquium Mathematicum PY - 2001 SP - 159 EP - 174 VL - 88 IS - 2 UR - http://geodesic.mathdoc.fr/articles/10.4064/cm88-2-1/ DO - 10.4064/cm88-2-1 LA - en ID - 10_4064_cm88_2_1 ER -
%0 Journal Article %A Jean-Marie De Koninck %A Jason Pierre Sweeney %T On the unimodal character of the frequency function of the largest prime factor %J Colloquium Mathematicum %D 2001 %P 159-174 %V 88 %N 2 %U http://geodesic.mathdoc.fr/articles/10.4064/cm88-2-1/ %R 10.4064/cm88-2-1 %G en %F 10_4064_cm88_2_1
Jean-Marie De Koninck; Jason Pierre Sweeney. On the unimodal character of the frequency function of the largest prime factor. Colloquium Mathematicum, Tome 88 (2001) no. 2, pp. 159-174. doi: 10.4064/cm88-2-1
Cité par Sources :