Multipliers of the Hardy space $H^1$ and power bounded operators
Colloquium Mathematicum, Tome 88 (2001) no. 1, pp. 57-73.

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

We study the space of functions $\varphi :{\mathbb N}\to {\mathbb C}$ such that there is a Hilbert space $H$, a power bounded operator $T$ in $B(H)$ and vectors $\xi ,\eta $ in $H$ such that $\varphi (n) = \langle T^n\xi ,\eta \rangle .$ This implies that the matrix $(\varphi (i+j))_{i,j\ge 0}$ is a Schur multiplier of $B(\ell _2)$ or equivalently is in the space $(\ell _1 \mathrel {\breve {\otimes }} \ell _1)^*$. We show that the converse does not hold, which answers a question raised by Peller [Pe]. Our approach makes use of a new class of Fourier multipliers of $H^1$ which we call “shift-bounded”. We show that there is a $\varphi $ which is a “completely bounded” multiplier of $H^1$, or equivalently for which $(\varphi (i+j))_{i,j\ge 0}$ is a bounded Schur multiplier of $B(\ell _2)$, but which is not shift-bounded on $H^1$. We also give a characterization of “completely shift-bounded” multipliers on $H^1$.
DOI : 10.4064/cm88-1-6
Keywords: study space functions varphi mathbb mathbb there hilbert space power bounded operator vectors eta varphi langle eta rangle implies matrix varphi schur multiplier ell equivalently space ell mathrel breve otimes ell * converse does which answers question raised peller approach makes class fourier multipliers which call shift bounded there varphi which completely bounded multiplier equivalently which varphi bounded schur multiplier ell which shift bounded characterization completely shift bounded multipliers

Gilles Pisier 1

1 Texas A&M University College Station, TX 77843, U.S.A. and Equipe d'Analyse Université Paris VI Case 186 75252 Paris Cedex 05, France
@article{10_4064_cm88_1_6,
     author = {Gilles Pisier},
     title = {Multipliers of the {Hardy} space $H^1$
and power bounded operators},
     journal = {Colloquium Mathematicum},
     pages = {57--73},
     publisher = {mathdoc},
     volume = {88},
     number = {1},
     year = {2001},
     doi = {10.4064/cm88-1-6},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/cm88-1-6/}
}
TY  - JOUR
AU  - Gilles Pisier
TI  - Multipliers of the Hardy space $H^1$
and power bounded operators
JO  - Colloquium Mathematicum
PY  - 2001
SP  - 57
EP  - 73
VL  - 88
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/cm88-1-6/
DO  - 10.4064/cm88-1-6
LA  - en
ID  - 10_4064_cm88_1_6
ER  - 
%0 Journal Article
%A Gilles Pisier
%T Multipliers of the Hardy space $H^1$
and power bounded operators
%J Colloquium Mathematicum
%D 2001
%P 57-73
%V 88
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/cm88-1-6/
%R 10.4064/cm88-1-6
%G en
%F 10_4064_cm88_1_6
Gilles Pisier. Multipliers of the Hardy space $H^1$
and power bounded operators. Colloquium Mathematicum, Tome 88 (2001) no. 1, pp. 57-73. doi : 10.4064/cm88-1-6. http://geodesic.mathdoc.fr/articles/10.4064/cm88-1-6/

Cité par Sources :