Actions of Hopf algebras on pro-semisimple
noetherian algebras and their invariants
Colloquium Mathematicum, Tome 88 (2001) no. 1, pp. 39-55
Cet article a éte moissonné depuis la source Institute of Mathematics Polish Academy of Sciences
Let $H$ be a Hopf algebra over a field $k$ such that every
finite-dimensional (left) $H$-module is semisimple. We give a
counterpart of the first fundamental theorem of the classical
invariant theory for locally finite, finitely generated
(commutative) $H$-module algebras, and for local, complete
$H$-module algebras. Also, we prove that if $H$ acts on the
$k$-algebra $A=k[[X_{1},\dots,X_{n}]]$ in such a
way that the unique maximal ideal in $A$ is invariant, then the
algebra of invariants $A^{H}$ is a noetherian Cohen–Macaulay
ring.
Keywords:
hopf algebra field every finite dimensional h module semisimple counterpart first fundamental theorem classical invariant theory locally finite finitely generated commutative h module algebras local complete h module algebras prove acts k algebra dots unique maximal ideal invariant algebra invariants noetherian cohen macaulay ring
Affiliations des auteurs :
Andrzej Tyc 1
@article{10_4064_cm88_1_5,
author = {Andrzej Tyc},
title = {Actions of {Hopf} algebras on pro-semisimple
noetherian algebras and their invariants},
journal = {Colloquium Mathematicum},
pages = {39--55},
year = {2001},
volume = {88},
number = {1},
doi = {10.4064/cm88-1-5},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/cm88-1-5/}
}
TY - JOUR AU - Andrzej Tyc TI - Actions of Hopf algebras on pro-semisimple noetherian algebras and their invariants JO - Colloquium Mathematicum PY - 2001 SP - 39 EP - 55 VL - 88 IS - 1 UR - http://geodesic.mathdoc.fr/articles/10.4064/cm88-1-5/ DO - 10.4064/cm88-1-5 LA - en ID - 10_4064_cm88_1_5 ER -
Andrzej Tyc. Actions of Hopf algebras on pro-semisimple noetherian algebras and their invariants. Colloquium Mathematicum, Tome 88 (2001) no. 1, pp. 39-55. doi: 10.4064/cm88-1-5
Cité par Sources :