On free subgroups of units
in quaternion algebras
Colloquium Mathematicum, Tome 88 (2001) no. 1, pp. 21-27
Cet article a éte moissonné depuis la source Institute of Mathematics Polish Academy of Sciences
It is well known that for the ring ${\rm
H}({\mathbb Z})$ of integral quaternions the
unit group ${\rm U}( {\rm
H}({\mathbb Z})$ is finite. On the other
hand, for the rational quaternion algebra $ {\rm
H}({\mathbb Q})$, its unit group is infinite and
even contains a nontrivial free subgroup. In this note (see
Theorem 1.5 and Corollary 2.6) we
find all intermediate rings ${\mathbb Z}\subset A
\subseteq {\mathbb Q}$ such that the group of
units ${\rm U}( {{\rm
H}(A)})$ of quaternions over $A$ contains a nontrivial free
subgroup. In each case we indicate such a subgroup explicitly.
We do our best to keep the arguments as simple as possible.
Keywords:
known ring mathbb integral quaternions unit group mathbb finite other rational quaternion algebra mathbb its unit group infinite even contains nontrivial subgroup note see theorem corollary intermediate rings mathbb subset subseteq mathbb group units quaternions contains nontrivial subgroup each indicate subgroup explicitly best keep arguments simple possible
Affiliations des auteurs :
Jan Krempa 1
@article{10_4064_cm88_1_3,
author = {Jan Krempa},
title = {On free subgroups of units
in quaternion algebras},
journal = {Colloquium Mathematicum},
pages = {21--27},
year = {2001},
volume = {88},
number = {1},
doi = {10.4064/cm88-1-3},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/cm88-1-3/}
}
Jan Krempa. On free subgroups of units in quaternion algebras. Colloquium Mathematicum, Tome 88 (2001) no. 1, pp. 21-27. doi: 10.4064/cm88-1-3
Cité par Sources :