On free subgroups of units in quaternion algebras
Colloquium Mathematicum, Tome 88 (2001) no. 1, pp. 21-27.

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

It is well known that for the ring ${\rm H}({\mathbb Z})$ of integral quaternions the unit group ${\rm U}( {\rm H}({\mathbb Z})$ is finite. On the other hand, for the rational quaternion algebra $ {\rm H}({\mathbb Q})$, its unit group is infinite and even contains a nontrivial free subgroup. In this note (see Theorem 1.5 and Corollary 2.6) we find all intermediate rings ${\mathbb Z}\subset A \subseteq {\mathbb Q}$ such that the group of units ${\rm U}( {{\rm H}(A)})$ of quaternions over $A$ contains a nontrivial free subgroup. In each case we indicate such a subgroup explicitly. We do our best to keep the arguments as simple as possible.
DOI : 10.4064/cm88-1-3
Keywords: known ring mathbb integral quaternions unit group mathbb finite other rational quaternion algebra mathbb its unit group infinite even contains nontrivial subgroup note see theorem corollary intermediate rings mathbb subset subseteq mathbb group units quaternions contains nontrivial subgroup each indicate subgroup explicitly best keep arguments simple possible

Jan Krempa 1

1 Institute of Mathematics Warsaw University Banacha 2 02-097 Warszawa, Poland
@article{10_4064_cm88_1_3,
     author = {Jan Krempa},
     title = {On free subgroups of units
in quaternion algebras},
     journal = {Colloquium Mathematicum},
     pages = {21--27},
     publisher = {mathdoc},
     volume = {88},
     number = {1},
     year = {2001},
     doi = {10.4064/cm88-1-3},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/cm88-1-3/}
}
TY  - JOUR
AU  - Jan Krempa
TI  - On free subgroups of units
in quaternion algebras
JO  - Colloquium Mathematicum
PY  - 2001
SP  - 21
EP  - 27
VL  - 88
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/cm88-1-3/
DO  - 10.4064/cm88-1-3
LA  - en
ID  - 10_4064_cm88_1_3
ER  - 
%0 Journal Article
%A Jan Krempa
%T On free subgroups of units
in quaternion algebras
%J Colloquium Mathematicum
%D 2001
%P 21-27
%V 88
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/cm88-1-3/
%R 10.4064/cm88-1-3
%G en
%F 10_4064_cm88_1_3
Jan Krempa. On free subgroups of units
in quaternion algebras. Colloquium Mathematicum, Tome 88 (2001) no. 1, pp. 21-27. doi : 10.4064/cm88-1-3. http://geodesic.mathdoc.fr/articles/10.4064/cm88-1-3/

Cité par Sources :