An addendum and corrigendum to “Almost free splitters"
(Colloq. Math. 81 (1999), 193–221)
Colloquium Mathematicum, Tome 88 (2001) no. 1, pp. 155-158
Cet article a éte moissonné depuis la source Institute of Mathematics Polish Academy of Sciences
Let $R$ be a subring of the rational numbers ${\mathbb Q}$. We recall from
\cite{GS2} that an $R$-module $G$ is a splitter if ${\rm Ext}^1_R(G,G)
= 0$. In this note we correct the statement of Main Theorem 1.5 in
\cite{GS2} and discuss the existence of non-free splitters of
cardinality $\aleph_1$ under the negation of the special continuum
hypothesis CH.
Keywords:
subring rational numbers mathbb recall cite r module splitter ext note correct statement main theorem cite discuss existence non free splitters cardinality aleph under negation special continuum hypothesis
Affiliations des auteurs :
Rüdiger Göbel 1 ; Saharon Shelah 2
@article{10_4064_cm88_1_11,
author = {R\"udiger G\"obel and Saharon Shelah},
title = {An addendum and corrigendum to {{\textquotedblleft}Almost} free {splitters"
(Colloq.} {Math.} 81 (1999), 193{\textendash}221)},
journal = {Colloquium Mathematicum},
pages = {155--158},
year = {2001},
volume = {88},
number = {1},
doi = {10.4064/cm88-1-11},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/cm88-1-11/}
}
TY - JOUR AU - Rüdiger Göbel AU - Saharon Shelah TI - An addendum and corrigendum to “Almost free splitters" (Colloq. Math. 81 (1999), 193–221) JO - Colloquium Mathematicum PY - 2001 SP - 155 EP - 158 VL - 88 IS - 1 UR - http://geodesic.mathdoc.fr/articles/10.4064/cm88-1-11/ DO - 10.4064/cm88-1-11 LA - en ID - 10_4064_cm88_1_11 ER -
%0 Journal Article %A Rüdiger Göbel %A Saharon Shelah %T An addendum and corrigendum to “Almost free splitters" (Colloq. Math. 81 (1999), 193–221) %J Colloquium Mathematicum %D 2001 %P 155-158 %V 88 %N 1 %U http://geodesic.mathdoc.fr/articles/10.4064/cm88-1-11/ %R 10.4064/cm88-1-11 %G en %F 10_4064_cm88_1_11
Rüdiger Göbel; Saharon Shelah. An addendum and corrigendum to “Almost free splitters" (Colloq. Math. 81 (1999), 193–221). Colloquium Mathematicum, Tome 88 (2001) no. 1, pp. 155-158. doi: 10.4064/cm88-1-11
Cité par Sources :