Blowup rates for nonlinear heat equations with gradient terms and for parabolic inequalities
Colloquium Mathematicum, Tome 88 (2001) no. 1, pp. 135-154.

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

Consider the nonlinear heat equation (E): $u_t-{\mit \Delta } u=|u|^{p-1}u+b|\nabla u|^q$. We prove that for a large class of radial, positive, nonglobal solutions of (E), one has the blowup estimates $C_1 (T-t)^{-1/(p-1)} \leq \| u(t)\| _\infty \leq C_2 (T-t)^{-1/(p-1)}$. Also, as an application of our method, we obtain the same upper estimate if $u$ only satisfies the nonlinear parabolic inequality $u_t-u_{xx}\geq u^p$. More general inequalities of the form $u_t-u_{xx}\geq f(u)$ with, for instance, $f(u)=(1+u)\mathop {\rm log}\nolimits ^p(1+u)$ are also treated. Our results show that for solutions of the parabolic inequality, one has essentially the same estimates as for solutions of the ordinary differential inequality $\dot v\geq f(v)$.
DOI : 10.4064/cm88-1-10
Keywords: consider nonlinear heat equation t mit delta p nabla prove large class radial positive nonglobal solutions has blowup estimates t t p leq infty leq t t p application method obtain upper estimate only satisfies nonlinear parabolic inequality t u geq general inequalities form t u geq instance mathop log nolimits treated results solutions parabolic inequality has essentially estimates solutions ordinary differential inequality dot geq

Philippe Souplet 1 ; Slim Tayachi 2

1 Département de Mathématiques INSSET Université de Picardie 02109 St-Quentin, France and Laboratoire de Mathématiques Appliquées UMR CNRS 7641 Université de Versailles 45 avenue des Etats-Unis 78035 Versailles, France
2 Département de Mathématiques Faculté des Sciences de Tunis Université Tunis II, Campus Universitaire 1060 Tunis, Tunisia
@article{10_4064_cm88_1_10,
     author = {Philippe Souplet and Slim Tayachi},
     title = {Blowup rates for nonlinear heat
equations with gradient terms
and for parabolic inequalities},
     journal = {Colloquium Mathematicum},
     pages = {135--154},
     publisher = {mathdoc},
     volume = {88},
     number = {1},
     year = {2001},
     doi = {10.4064/cm88-1-10},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/cm88-1-10/}
}
TY  - JOUR
AU  - Philippe Souplet
AU  - Slim Tayachi
TI  - Blowup rates for nonlinear heat
equations with gradient terms
and for parabolic inequalities
JO  - Colloquium Mathematicum
PY  - 2001
SP  - 135
EP  - 154
VL  - 88
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/cm88-1-10/
DO  - 10.4064/cm88-1-10
LA  - en
ID  - 10_4064_cm88_1_10
ER  - 
%0 Journal Article
%A Philippe Souplet
%A Slim Tayachi
%T Blowup rates for nonlinear heat
equations with gradient terms
and for parabolic inequalities
%J Colloquium Mathematicum
%D 2001
%P 135-154
%V 88
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/cm88-1-10/
%R 10.4064/cm88-1-10
%G en
%F 10_4064_cm88_1_10
Philippe Souplet; Slim Tayachi. Blowup rates for nonlinear heat
equations with gradient terms
and for parabolic inequalities. Colloquium Mathematicum, Tome 88 (2001) no. 1, pp. 135-154. doi : 10.4064/cm88-1-10. http://geodesic.mathdoc.fr/articles/10.4064/cm88-1-10/

Cité par Sources :