Blowup rates for nonlinear heat
equations with gradient terms
and for parabolic inequalities
Colloquium Mathematicum, Tome 88 (2001) no. 1, pp. 135-154
Cet article a éte moissonné depuis la source Institute of Mathematics Polish Academy of Sciences
Consider the nonlinear heat equation (E): $u_t-{\mit
\Delta } u=|u|^{p-1}u+b|\nabla u|^q$. We prove that for a large
class of radial, positive, nonglobal solutions of (E), one has
the blowup estimates $C_1 (T-t)^{-1/(p-1)} \leq \|
u(t)\| _\infty \leq C_2
(T-t)^{-1/(p-1)}$. Also, as an application of our method, we
obtain the same upper estimate if $u$ only satisfies the
nonlinear parabolic inequality $u_t-u_{xx}\geq u^p$. More
general inequalities of the form $u_t-u_{xx}\geq
f(u)$ with, for instance, $f(u)=(1+u)\mathop {\rm log}\nolimits
^p(1+u)$ are also treated. Our results show that for solutions
of the parabolic inequality, one has essentially the same
estimates as for solutions of the ordinary differential
inequality $\dot v\geq f(v)$.
Keywords:
consider nonlinear heat equation t mit delta p nabla prove large class radial positive nonglobal solutions has blowup estimates t t p leq infty leq t t p application method obtain upper estimate only satisfies nonlinear parabolic inequality t u geq general inequalities form t u geq instance mathop log nolimits treated results solutions parabolic inequality has essentially estimates solutions ordinary differential inequality dot geq
Affiliations des auteurs :
Philippe Souplet 1 ; Slim Tayachi 2
@article{10_4064_cm88_1_10,
author = {Philippe Souplet and Slim Tayachi},
title = {Blowup rates for nonlinear heat
equations with gradient terms
and for parabolic inequalities},
journal = {Colloquium Mathematicum},
pages = {135--154},
year = {2001},
volume = {88},
number = {1},
doi = {10.4064/cm88-1-10},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/cm88-1-10/}
}
TY - JOUR AU - Philippe Souplet AU - Slim Tayachi TI - Blowup rates for nonlinear heat equations with gradient terms and for parabolic inequalities JO - Colloquium Mathematicum PY - 2001 SP - 135 EP - 154 VL - 88 IS - 1 UR - http://geodesic.mathdoc.fr/articles/10.4064/cm88-1-10/ DO - 10.4064/cm88-1-10 LA - en ID - 10_4064_cm88_1_10 ER -
%0 Journal Article %A Philippe Souplet %A Slim Tayachi %T Blowup rates for nonlinear heat equations with gradient terms and for parabolic inequalities %J Colloquium Mathematicum %D 2001 %P 135-154 %V 88 %N 1 %U http://geodesic.mathdoc.fr/articles/10.4064/cm88-1-10/ %R 10.4064/cm88-1-10 %G en %F 10_4064_cm88_1_10
Philippe Souplet; Slim Tayachi. Blowup rates for nonlinear heat equations with gradient terms and for parabolic inequalities. Colloquium Mathematicum, Tome 88 (2001) no. 1, pp. 135-154. doi: 10.4064/cm88-1-10
Cité par Sources :