A Ricci flat pseudo-Riemannian metric
on the tangent bundle of a Riemannian manifold
Colloquium Mathematicum, Tome 87 (2001) no. 2, pp. 227-233
Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences
We consider a certain pseudo-Riemannian metric $G$ on the
tangent bundle $TM$ of a Riemannian manifold $(M,g)$ and obtain
necessary and sufficient conditions for the pseudo-Riemannian
manifold $(TM,G)$ to be Ricci flat (see Theorem 2).
Keywords:
consider certain pseudo riemannian metric tangent bundle riemannian manifold obtain necessary sufficient conditions pseudo riemannian manifold ricci flat see theorem
Affiliations des auteurs :
Neculai Papaghiuc 1
@article{10_4064_cm87_2_8,
author = {Neculai Papaghiuc},
title = {A {Ricci} flat {pseudo-Riemannian} metric
on the tangent bundle of a {Riemannian} manifold},
journal = {Colloquium Mathematicum},
pages = {227--233},
publisher = {mathdoc},
volume = {87},
number = {2},
year = {2001},
doi = {10.4064/cm87-2-8},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/cm87-2-8/}
}
TY - JOUR AU - Neculai Papaghiuc TI - A Ricci flat pseudo-Riemannian metric on the tangent bundle of a Riemannian manifold JO - Colloquium Mathematicum PY - 2001 SP - 227 EP - 233 VL - 87 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.4064/cm87-2-8/ DO - 10.4064/cm87-2-8 LA - en ID - 10_4064_cm87_2_8 ER -
Neculai Papaghiuc. A Ricci flat pseudo-Riemannian metric on the tangent bundle of a Riemannian manifold. Colloquium Mathematicum, Tome 87 (2001) no. 2, pp. 227-233. doi: 10.4064/cm87-2-8
Cité par Sources :