A Ricci flat pseudo-Riemannian metric on the tangent bundle of a Riemannian manifold
Colloquium Mathematicum, Tome 87 (2001) no. 2, pp. 227-233.

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

We consider a certain pseudo-Riemannian metric $G$ on the tangent bundle $TM$ of a Riemannian manifold $(M,g)$ and obtain necessary and sufficient conditions for the pseudo-Riemannian manifold $(TM,G)$ to be Ricci flat (see Theorem 2).
DOI : 10.4064/cm87-2-8
Keywords: consider certain pseudo riemannian metric tangent bundle riemannian manifold obtain necessary sufficient conditions pseudo riemannian manifold ricci flat see theorem

Neculai Papaghiuc 1

1 Department of Mathematics Technical University 6600 Iaşi, Romania
@article{10_4064_cm87_2_8,
     author = {Neculai Papaghiuc},
     title = {A {Ricci} flat {pseudo-Riemannian} metric
on the tangent bundle of a {Riemannian} manifold},
     journal = {Colloquium Mathematicum},
     pages = {227--233},
     publisher = {mathdoc},
     volume = {87},
     number = {2},
     year = {2001},
     doi = {10.4064/cm87-2-8},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/cm87-2-8/}
}
TY  - JOUR
AU  - Neculai Papaghiuc
TI  - A Ricci flat pseudo-Riemannian metric
on the tangent bundle of a Riemannian manifold
JO  - Colloquium Mathematicum
PY  - 2001
SP  - 227
EP  - 233
VL  - 87
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/cm87-2-8/
DO  - 10.4064/cm87-2-8
LA  - en
ID  - 10_4064_cm87_2_8
ER  - 
%0 Journal Article
%A Neculai Papaghiuc
%T A Ricci flat pseudo-Riemannian metric
on the tangent bundle of a Riemannian manifold
%J Colloquium Mathematicum
%D 2001
%P 227-233
%V 87
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/cm87-2-8/
%R 10.4064/cm87-2-8
%G en
%F 10_4064_cm87_2_8
Neculai Papaghiuc. A Ricci flat pseudo-Riemannian metric
on the tangent bundle of a Riemannian manifold. Colloquium Mathematicum, Tome 87 (2001) no. 2, pp. 227-233. doi : 10.4064/cm87-2-8. http://geodesic.mathdoc.fr/articles/10.4064/cm87-2-8/

Cité par Sources :