Direct decompositions of uniform groups
Colloquium Mathematicum, Tome 87 (2001) no. 2, pp. 211-226.

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

Uniform groups are extensions of rigid completely decomposable groups by a finite direct sum of cyclic primary groups all of the same order. The direct decompositions of uniform groups are completely determined by an algorithm that is realised by a MAPLE procedure.
DOI : 10.4064/cm87-2-7
Keywords: uniform groups extensions rigid completely decomposable groups finite direct sum cyclic primary groups order direct decompositions uniform groups completely determined algorithm realised maple procedure

A. Mader 1 ; O. Mutzbauer 2

1 Department of Mathematics University of Hawaii 2565 The Mall Honolulu, HI 96822, U.S.A.
2 Mathematisches Institut Universität Würzburg Am Hubland D-97074 Würzburg, Germany
@article{10_4064_cm87_2_7,
     author = {A. Mader and O. Mutzbauer},
     title = {Direct decompositions of uniform groups},
     journal = {Colloquium Mathematicum},
     pages = {211--226},
     publisher = {mathdoc},
     volume = {87},
     number = {2},
     year = {2001},
     doi = {10.4064/cm87-2-7},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/cm87-2-7/}
}
TY  - JOUR
AU  - A. Mader
AU  - O. Mutzbauer
TI  - Direct decompositions of uniform groups
JO  - Colloquium Mathematicum
PY  - 2001
SP  - 211
EP  - 226
VL  - 87
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/cm87-2-7/
DO  - 10.4064/cm87-2-7
LA  - en
ID  - 10_4064_cm87_2_7
ER  - 
%0 Journal Article
%A A. Mader
%A O. Mutzbauer
%T Direct decompositions of uniform groups
%J Colloquium Mathematicum
%D 2001
%P 211-226
%V 87
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/cm87-2-7/
%R 10.4064/cm87-2-7
%G en
%F 10_4064_cm87_2_7
A. Mader; O. Mutzbauer. Direct decompositions of uniform groups. Colloquium Mathematicum, Tome 87 (2001) no. 2, pp. 211-226. doi : 10.4064/cm87-2-7. http://geodesic.mathdoc.fr/articles/10.4064/cm87-2-7/

Cité par Sources :