Pieri-type intersection formulas and primary
obstructions for decomposing $2$-forms
Colloquium Mathematicum, Tome 87 (2001) no. 2, pp. 201-210
Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences
We study the homological intersection behaviour for the
Chern cells of the universal bundle of $G(d,Q_n)$, the space of
$[d]$-planes in the smooth quadric $Q_n$ in ${\mathbb
P}^{n+1}$ over the field of complex numbers. For this
purpose we define some auxiliary cells in terms of which the
intersection properties of the Chern cells can be described.
This is then applied to obtain some new necessary conditions for
the global decomposability of a 2-form of constant rank.
Keywords:
study homological intersection behaviour chern cells universal bundle n space planes smooth quadric mathbb field complex numbers purpose define auxiliary cells terms which intersection properties chern cells described applied obtain necessary conditions global decomposability form constant rank
Affiliations des auteurs :
Sinan Sertöz 1
@article{10_4064_cm87_2_6,
author = {Sinan Sert\"oz},
title = {Pieri-type intersection formulas and primary
obstructions for decomposing $2$-forms},
journal = {Colloquium Mathematicum},
pages = {201--210},
publisher = {mathdoc},
volume = {87},
number = {2},
year = {2001},
doi = {10.4064/cm87-2-6},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/cm87-2-6/}
}
TY - JOUR AU - Sinan Sertöz TI - Pieri-type intersection formulas and primary obstructions for decomposing $2$-forms JO - Colloquium Mathematicum PY - 2001 SP - 201 EP - 210 VL - 87 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.4064/cm87-2-6/ DO - 10.4064/cm87-2-6 LA - en ID - 10_4064_cm87_2_6 ER -
Sinan Sertöz. Pieri-type intersection formulas and primary obstructions for decomposing $2$-forms. Colloquium Mathematicum, Tome 87 (2001) no. 2, pp. 201-210. doi: 10.4064/cm87-2-6
Cité par Sources :