On an estimate for the linearized compressible Navier–Stokes equations in the $L_p$-framework
Colloquium Mathematicum, Tome 87 (2001) no. 2, pp. 159-169.

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

An $L_p$-estimate with a constant independent of time for solutions of the linearized compressible Navier–Stokes system in the whole space (under the assumption that solutions have compact supports in space) is obtained.
DOI : 10.4064/cm87-2-2
Keywords: p estimate constant independent time solutions linearized compressible navier stokes system whole space under assumption solutions have compact supports space obtained

Piotr Bogus/law Mucha 1

1 Institute of Applied Mathematics and Mechanics Warsaw University Banacha 2 02-097 Warszawa, Poland
@article{10_4064_cm87_2_2,
     author = {Piotr Bogus/law Mucha},
     title = {On an estimate for the linearized {compressible
Navier{\textendash}Stokes} equations in the $L_p$-framework},
     journal = {Colloquium Mathematicum},
     pages = {159--169},
     publisher = {mathdoc},
     volume = {87},
     number = {2},
     year = {2001},
     doi = {10.4064/cm87-2-2},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/cm87-2-2/}
}
TY  - JOUR
AU  - Piotr Bogus/law Mucha
TI  - On an estimate for the linearized compressible
Navier–Stokes equations in the $L_p$-framework
JO  - Colloquium Mathematicum
PY  - 2001
SP  - 159
EP  - 169
VL  - 87
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/cm87-2-2/
DO  - 10.4064/cm87-2-2
LA  - en
ID  - 10_4064_cm87_2_2
ER  - 
%0 Journal Article
%A Piotr Bogus/law Mucha
%T On an estimate for the linearized compressible
Navier–Stokes equations in the $L_p$-framework
%J Colloquium Mathematicum
%D 2001
%P 159-169
%V 87
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/cm87-2-2/
%R 10.4064/cm87-2-2
%G en
%F 10_4064_cm87_2_2
Piotr Bogus/law Mucha. On an estimate for the linearized compressible
Navier–Stokes equations in the $L_p$-framework. Colloquium Mathematicum, Tome 87 (2001) no. 2, pp. 159-169. doi : 10.4064/cm87-2-2. http://geodesic.mathdoc.fr/articles/10.4064/cm87-2-2/

Cité par Sources :