Harmonic analysis for spinors
on real hyperbolic spaces
Colloquium Mathematicum, Tome 87 (2001) no. 2, pp. 245-286
Cet article a éte moissonné depuis la source Institute of Mathematics Polish Academy of Sciences
We develop the $L^2$ harmonic analysis for (Dirac) spinors
on the real hyperbolic space $H^n({\mathbb R})$
and give the analogue of the classical notions and results known
for functions and differential forms: we investigate the Poisson
transform, spherical function theory, spherical Fourier
transform and Fourier transform. Very explicit expressions and
statements are obtained by reduction to Jacobi analysis on
$L^2({\mathbb R})$. As applications, we describe
the exact spectrum of the Dirac operator, study the Abel
transform and derive explicit expressions for the heat kernel
associated with the spinor Laplacian.
Keywords:
develop harmonic analysis dirac spinors real hyperbolic space mathbb analogue classical notions results known functions differential forms investigate poisson transform spherical function theory spherical fourier transform fourier transform explicit expressions statements obtained reduction jacobi analysis mathbb applications describe exact spectrum dirac operator study abel transform derive explicit expressions heat kernel associated spinor laplacian
Affiliations des auteurs :
Roberto Camporesi 1 ; Emmanuel Pedon 2
@article{10_4064_cm87_2_10,
author = {Roberto Camporesi and Emmanuel Pedon},
title = {Harmonic analysis for spinors
on real hyperbolic spaces},
journal = {Colloquium Mathematicum},
pages = {245--286},
year = {2001},
volume = {87},
number = {2},
doi = {10.4064/cm87-2-10},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/cm87-2-10/}
}
TY - JOUR AU - Roberto Camporesi AU - Emmanuel Pedon TI - Harmonic analysis for spinors on real hyperbolic spaces JO - Colloquium Mathematicum PY - 2001 SP - 245 EP - 286 VL - 87 IS - 2 UR - http://geodesic.mathdoc.fr/articles/10.4064/cm87-2-10/ DO - 10.4064/cm87-2-10 LA - en ID - 10_4064_cm87_2_10 ER -
Roberto Camporesi; Emmanuel Pedon. Harmonic analysis for spinors on real hyperbolic spaces. Colloquium Mathematicum, Tome 87 (2001) no. 2, pp. 245-286. doi: 10.4064/cm87-2-10
Cité par Sources :