An analogue of Hardy's theorem for
the Heisenberg group
Colloquium Mathematicum, Tome 87 (2001) no. 1, pp. 137-145
Cet article a éte moissonné depuis la source Institute of Mathematics Polish Academy of Sciences
We observe that the classical theorem of Hardy on Fourier
transform pairs can be reformulated in terms of the heat kernel
associated with the Laplacian on the Euclidean space. This leads
to an interesting version of Hardy's theorem for the
sublaplacian on the Heisenberg group. We also consider certain
Rockland operators on the Heisenberg group and Schrödinger operators on $ {\mathbb R}^n $ related to
them.
Keywords:
observe classical theorem hardy fourier transform pairs reformulated terms heat kernel associated laplacian euclidean space leads interesting version hardys theorem sublaplacian heisenberg group consider certain rockland operators heisenberg group schr dinger operators mathbb related
Affiliations des auteurs :
S. Thangavelu  1
@article{10_4064_cm87_1_9,
author = {S. Thangavelu},
title = {An analogue of {Hardy's} theorem for
the {Heisenberg} group},
journal = {Colloquium Mathematicum},
pages = {137--145},
year = {2001},
volume = {87},
number = {1},
doi = {10.4064/cm87-1-9},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/cm87-1-9/}
}
S. Thangavelu. An analogue of Hardy's theorem for the Heisenberg group. Colloquium Mathematicum, Tome 87 (2001) no. 1, pp. 137-145. doi: 10.4064/cm87-1-9
Cité par Sources :