Local-global principle for annihilation of general local cohomology
Colloquium Mathematicum, Tome 87 (2001) no. 1, pp. 129-136.

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

Let $A$ be a Noetherian ring, let $M$ be a finitely generated $A$-module and let ${\mit \Phi } $ be a system of ideals of $A$. We prove that, for any ideal ${\mathfrak a}$ in ${\mit \Phi } $, if, for every prime ideal ${\mathfrak p}$ of $A$, there exists an integer $k({\mathfrak p})$, depending on ${\mathfrak p}$, such that ${\mathfrak a}^{k({ \mathfrak p})}$ kills the general local cohomology module $H_{{\mit \Phi } _{{\mathfrak p}}}^j(M_{{ \mathfrak p}})$ for every integer $j$ less than a fixed integer $n$, where ${\mit \Phi } _{{ \mathfrak p}}:=\{ {\mathfrak a}_{{\mathfrak p}}:{\mathfrak a}\in {\mit \Phi } \} $, then there exists an integer $k$ such that ${\mathfrak a}^kH_{{\mit \Phi } }^j(M)=0$ for every $j n$.
DOI : 10.4064/cm87-1-8
Keywords: noetherian ring finitely generated a module mit phi system ideals prove ideal mathfrak mit phi every prime ideal mathfrak there exists integer mathfrak depending mathfrak mathfrak mathfrak kills general local cohomology module mit phi mathfrak mathfrak every integer fixed integer where mit phi mathfrak mathfrak mathfrak mathfrak mit phi there exists integer mathfrak mit phi every

J. Asadollahi 1 ; K. Khashyarmanesh 2 ; Sh. Salarian 2

1 School of Science Tarbiat Modarres University P.O. Box 14155-4838 Tehran, Iran
2 Institute for Studies in Theoretical Physics and Mathematics P.O. Box 19395-5746 Tehran, Iran and Department of Mathematics Damghan University P.O. Box 36715-364 Damghan, Iran
@article{10_4064_cm87_1_8,
     author = {J. Asadollahi and K. Khashyarmanesh and Sh. Salarian},
     title = {Local-global principle for annihilation
of general local cohomology},
     journal = {Colloquium Mathematicum},
     pages = {129--136},
     publisher = {mathdoc},
     volume = {87},
     number = {1},
     year = {2001},
     doi = {10.4064/cm87-1-8},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/cm87-1-8/}
}
TY  - JOUR
AU  - J. Asadollahi
AU  - K. Khashyarmanesh
AU  - Sh. Salarian
TI  - Local-global principle for annihilation
of general local cohomology
JO  - Colloquium Mathematicum
PY  - 2001
SP  - 129
EP  - 136
VL  - 87
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/cm87-1-8/
DO  - 10.4064/cm87-1-8
LA  - en
ID  - 10_4064_cm87_1_8
ER  - 
%0 Journal Article
%A J. Asadollahi
%A K. Khashyarmanesh
%A Sh. Salarian
%T Local-global principle for annihilation
of general local cohomology
%J Colloquium Mathematicum
%D 2001
%P 129-136
%V 87
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/cm87-1-8/
%R 10.4064/cm87-1-8
%G en
%F 10_4064_cm87_1_8
J. Asadollahi; K. Khashyarmanesh; Sh. Salarian. Local-global principle for annihilation
of general local cohomology. Colloquium Mathematicum, Tome 87 (2001) no. 1, pp. 129-136. doi : 10.4064/cm87-1-8. http://geodesic.mathdoc.fr/articles/10.4064/cm87-1-8/

Cité par Sources :