Local-global principle for annihilation
of general local cohomology
Colloquium Mathematicum, Tome 87 (2001) no. 1, pp. 129-136
Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences
Let $A$ be a Noetherian ring, let $M$ be a finitely
generated $A$-module and let ${\mit \Phi } $ be a system of
ideals of $A$. We prove that, for any ideal ${\mathfrak
a}$ in ${\mit \Phi } $, if, for every prime ideal
${\mathfrak p}$ of $A$, there exists an integer
$k({\mathfrak p})$, depending on ${\mathfrak
p}$, such that ${\mathfrak a}^{k({
\mathfrak p})}$ kills the general local cohomology module
$H_{{\mit \Phi } _{{\mathfrak p}}}^j(M_{{
\mathfrak p}})$ for every integer $j$ less than a fixed
integer $n$, where ${\mit \Phi } _{{
\mathfrak p}}:=\{ {\mathfrak
a}_{{\mathfrak p}}:{\mathfrak a}\in
{\mit \Phi } \} $, then there exists an
integer $k$ such that ${\mathfrak a}^kH_{{\mit
\Phi } }^j(M)=0$ for every $j n$.
Keywords:
noetherian ring finitely generated a module mit phi system ideals prove ideal mathfrak mit phi every prime ideal mathfrak there exists integer mathfrak depending mathfrak mathfrak mathfrak kills general local cohomology module mit phi mathfrak mathfrak every integer fixed integer where mit phi mathfrak mathfrak mathfrak mathfrak mit phi there exists integer mathfrak mit phi every
Affiliations des auteurs :
J. Asadollahi 1 ; K. Khashyarmanesh 2 ; Sh. Salarian 2
@article{10_4064_cm87_1_8,
author = {J. Asadollahi and K. Khashyarmanesh and Sh. Salarian},
title = {Local-global principle for annihilation
of general local cohomology},
journal = {Colloquium Mathematicum},
pages = {129--136},
publisher = {mathdoc},
volume = {87},
number = {1},
year = {2001},
doi = {10.4064/cm87-1-8},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/cm87-1-8/}
}
TY - JOUR AU - J. Asadollahi AU - K. Khashyarmanesh AU - Sh. Salarian TI - Local-global principle for annihilation of general local cohomology JO - Colloquium Mathematicum PY - 2001 SP - 129 EP - 136 VL - 87 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.4064/cm87-1-8/ DO - 10.4064/cm87-1-8 LA - en ID - 10_4064_cm87_1_8 ER -
%0 Journal Article %A J. Asadollahi %A K. Khashyarmanesh %A Sh. Salarian %T Local-global principle for annihilation of general local cohomology %J Colloquium Mathematicum %D 2001 %P 129-136 %V 87 %N 1 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.4064/cm87-1-8/ %R 10.4064/cm87-1-8 %G en %F 10_4064_cm87_1_8
J. Asadollahi; K. Khashyarmanesh; Sh. Salarian. Local-global principle for annihilation of general local cohomology. Colloquium Mathematicum, Tome 87 (2001) no. 1, pp. 129-136. doi: 10.4064/cm87-1-8
Cité par Sources :