Behaviour of the first eigenvalue
of the $p$-Laplacian in a domain with a hole
Colloquium Mathematicum, Tome 87 (2001) no. 1, pp. 103-111
Cet article a éte moissonné depuis la source Institute of Mathematics Polish Academy of Sciences
We investigate the behaviour of a sequence $\lambda _{s}$,
$s=1,2,\dots, $ of eigenvalues of the
Dirichlet problem for the $p$-Laplacian in the domains $%
{\mit\Omega} _{s}$, $s=1,2,\dots, $ obtained by
removing from a given domain ${\mit\Omega} $ a set $E_{s}$
whose diameter vanishes when $s\rightarrow \infty $.
We estimate the deviation of $\lambda _{s}$
from the eigenvalue of the limit problem. For the derivation of our
results we construct an appropriate asymptotic expansion for the sequence of
solutions of the original eigenvalue problem.
Keywords:
investigate behaviour sequence lambda dots eigenvalues dirichlet problem p laplacian domains mit omega dots obtained removing given domain mit omega set whose diameter vanishes rightarrow infty estimate deviation lambda eigenvalue limit problem derivation results construct appropriate asymptotic expansion sequence solutions original eigenvalue problem
Affiliations des auteurs :
M. Sango  1
@article{10_4064_cm87_1_6,
author = {M. Sango},
title = {Behaviour of the first eigenvalue
of the $p${-Laplacian} in a domain with a hole},
journal = {Colloquium Mathematicum},
pages = {103--111},
year = {2001},
volume = {87},
number = {1},
doi = {10.4064/cm87-1-6},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/cm87-1-6/}
}
M. Sango. Behaviour of the first eigenvalue of the $p$-Laplacian in a domain with a hole. Colloquium Mathematicum, Tome 87 (2001) no. 1, pp. 103-111. doi: 10.4064/cm87-1-6
Cité par Sources :