Remarks on normal bases
Colloquium Mathematicum, Tome 87 (2001) no. 1, pp. 79-84.

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

We prove that any Galois extension of a commutative ring with a normal basis and abelian Galois group of odd order has a self-dual normal basis. We apply this result to get a very simple proof of nonexistence of normal bases for certain extensions which are of interest in number theory.
DOI : 10.4064/cm87-1-4
Keywords: prove galois extension commutative ring normal basis abelian galois group odd order has self dual normal basis apply result get simple proof nonexistence normal bases certain extensions which interest number theory

Marcin Mazur 1

1 Department of Mathematics University of Illinois at Urbana-Champaign 1409 W. Green Street Urbana, IL 61801, U.S.A.
@article{10_4064_cm87_1_4,
     author = {Marcin Mazur},
     title = {Remarks on normal bases},
     journal = {Colloquium Mathematicum},
     pages = {79--84},
     publisher = {mathdoc},
     volume = {87},
     number = {1},
     year = {2001},
     doi = {10.4064/cm87-1-4},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/cm87-1-4/}
}
TY  - JOUR
AU  - Marcin Mazur
TI  - Remarks on normal bases
JO  - Colloquium Mathematicum
PY  - 2001
SP  - 79
EP  - 84
VL  - 87
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/cm87-1-4/
DO  - 10.4064/cm87-1-4
LA  - en
ID  - 10_4064_cm87_1_4
ER  - 
%0 Journal Article
%A Marcin Mazur
%T Remarks on normal bases
%J Colloquium Mathematicum
%D 2001
%P 79-84
%V 87
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/cm87-1-4/
%R 10.4064/cm87-1-4
%G en
%F 10_4064_cm87_1_4
Marcin Mazur. Remarks on normal bases. Colloquium Mathematicum, Tome 87 (2001) no. 1, pp. 79-84. doi : 10.4064/cm87-1-4. http://geodesic.mathdoc.fr/articles/10.4064/cm87-1-4/

Cité par Sources :