A classification of two-peak sincere posets of finite prinjective type
and their sincere prinjective representations
Colloquium Mathematicum, Tome 87 (2001) no. 1, pp. 7-77
Cet article a éte moissonné depuis la source Institute of Mathematics Polish Academy of Sciences
Assume that $K$ is an arbitrary
field. Let $(I, \preceq )$ be a two-peak poset of finite
prinjective type and let $KI$ be the incidence algebra of $I$. We
study sincere posets $I$ and sincere prinjective modules over
$KI$. The complete set of all sincere two-peak posets of finite
prinjective type is given in Theorem 3.1. Moreover, for each such
poset $I$, a complete
set of representatives of isomorphism classes of
sincere indecomposable prinjective modules over $KI$ is
presented in Tables 8.1.
Keywords:
assume nbsp arbitrary field preceq two peak poset finite prinjective type nbsp incidence algebra study sincere posets sincere prinjective modules nbsp complete set sincere two peak posets finite prinjective type given theorem moreover each poset nbsp complete set representatives isomorphism classes sincere indecomposable prinjective modules presented tables
Affiliations des auteurs :
Justyna Kosakowska  1
@article{10_4064_cm87_1_3,
author = {Justyna Kosakowska},
title = {A classification of two-peak sincere posets of finite prinjective type
and their sincere prinjective representations},
journal = {Colloquium Mathematicum},
pages = {7--77},
year = {2001},
volume = {87},
number = {1},
doi = {10.4064/cm87-1-3},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/cm87-1-3/}
}
TY - JOUR AU - Justyna Kosakowska TI - A classification of two-peak sincere posets of finite prinjective type and their sincere prinjective representations JO - Colloquium Mathematicum PY - 2001 SP - 7 EP - 77 VL - 87 IS - 1 UR - http://geodesic.mathdoc.fr/articles/10.4064/cm87-1-3/ DO - 10.4064/cm87-1-3 LA - en ID - 10_4064_cm87_1_3 ER -
%0 Journal Article %A Justyna Kosakowska %T A classification of two-peak sincere posets of finite prinjective type and their sincere prinjective representations %J Colloquium Mathematicum %D 2001 %P 7-77 %V 87 %N 1 %U http://geodesic.mathdoc.fr/articles/10.4064/cm87-1-3/ %R 10.4064/cm87-1-3 %G en %F 10_4064_cm87_1_3
Justyna Kosakowska. A classification of two-peak sincere posets of finite prinjective type and their sincere prinjective representations. Colloquium Mathematicum, Tome 87 (2001) no. 1, pp. 7-77. doi: 10.4064/cm87-1-3
Cité par Sources :