Weighted fractional and Hardy type operators in Orlicz–Morrey spaces
Colloquium Mathematicum, Tome 165 (2021) no. 2, pp. 253-268
Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences
We prove boundedness of the Riesz fractional integral operator between distinct Orlicz–Morrey spaces, which is a generalization of the Adams type result. Moreover, we investigate boundedness of some weighted Hardy type operators and weighted Riesz fractional integral operators between distinct Orlicz–Morrey spaces.
Keywords:
prove boundedness riesz fractional integral operator between distinct orlicz morrey spaces which generalization adams type result moreover investigate boundedness weighted hardy type operators weighted riesz fractional integral operators between distinct orlicz morrey spaces
Affiliations des auteurs :
Evgeniya Burtseva 1
@article{10_4064_cm8129_6_2020,
author = {Evgeniya Burtseva},
title = {Weighted fractional and {Hardy} type operators in {Orlicz{\textendash}Morrey} spaces},
journal = {Colloquium Mathematicum},
pages = {253--268},
publisher = {mathdoc},
volume = {165},
number = {2},
year = {2021},
doi = {10.4064/cm8129-6-2020},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/cm8129-6-2020/}
}
TY - JOUR AU - Evgeniya Burtseva TI - Weighted fractional and Hardy type operators in Orlicz–Morrey spaces JO - Colloquium Mathematicum PY - 2021 SP - 253 EP - 268 VL - 165 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.4064/cm8129-6-2020/ DO - 10.4064/cm8129-6-2020 LA - en ID - 10_4064_cm8129_6_2020 ER -
Evgeniya Burtseva. Weighted fractional and Hardy type operators in Orlicz–Morrey spaces. Colloquium Mathematicum, Tome 165 (2021) no. 2, pp. 253-268. doi: 10.4064/cm8129-6-2020
Cité par Sources :