A new proof of the $C^\infty $ regularity of $C^2$ conformal mappings on the Heisenberg group
Colloquium Mathematicum, Tome 150 (2017) no. 2, pp. 217-228
Cet article a éte moissonné depuis la source Institute of Mathematics Polish Academy of Sciences
We give a new proof for the $C^\infty $ regularity of $C^2$ smooth conformal mappings of the sub-Riemannian Heisenberg group. Our proof avoids any use of nonlinear potential theory and relies only on hypoellipticity of Hörmander operators and quasiconformal flows. This approach is inspired by prior work of Sarvas and Liu.
Keywords:
proof infty regularity smooth conformal mappings sub riemannian heisenberg group proof avoids nonlinear potential theory relies only hypoellipticity rmander operators quasiconformal flows approach inspired prior work sarvas liu
Affiliations des auteurs :
Alex D. Austin 1 ; Jeremy T. Tyson 2
@article{10_4064_cm7193_3_2017,
author = {Alex D. Austin and Jeremy T. Tyson},
title = {A new proof of the $C^\infty $ regularity of $C^2$ conformal mappings on the {Heisenberg} group},
journal = {Colloquium Mathematicum},
pages = {217--228},
year = {2017},
volume = {150},
number = {2},
doi = {10.4064/cm7193-3-2017},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/cm7193-3-2017/}
}
TY - JOUR AU - Alex D. Austin AU - Jeremy T. Tyson TI - A new proof of the $C^\infty $ regularity of $C^2$ conformal mappings on the Heisenberg group JO - Colloquium Mathematicum PY - 2017 SP - 217 EP - 228 VL - 150 IS - 2 UR - http://geodesic.mathdoc.fr/articles/10.4064/cm7193-3-2017/ DO - 10.4064/cm7193-3-2017 LA - en ID - 10_4064_cm7193_3_2017 ER -
%0 Journal Article %A Alex D. Austin %A Jeremy T. Tyson %T A new proof of the $C^\infty $ regularity of $C^2$ conformal mappings on the Heisenberg group %J Colloquium Mathematicum %D 2017 %P 217-228 %V 150 %N 2 %U http://geodesic.mathdoc.fr/articles/10.4064/cm7193-3-2017/ %R 10.4064/cm7193-3-2017 %G en %F 10_4064_cm7193_3_2017
Alex D. Austin; Jeremy T. Tyson. A new proof of the $C^\infty $ regularity of $C^2$ conformal mappings on the Heisenberg group. Colloquium Mathematicum, Tome 150 (2017) no. 2, pp. 217-228. doi: 10.4064/cm7193-3-2017
Cité par Sources :