Existence of cycle-finite algebras of infinite representation type without directing projective or injective modules
Colloquium Mathematicum, Tome 148 (2017) no. 2, pp. 165-190
Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences
We solve an open problem concerning the existence of cycle-finite algebras of infinite representation type for which all indecomposable projective modules and indecomposable injective modules are nondirecting (lie on oriented cycles of indecomposable modules). We prove that there exist such algebras having large numbers of almost acyclic Auslander–Reiten components with finite cyclic multisections.
Keywords:
solve problem concerning existence cycle finite algebras infinite representation type which indecomposable projective modules indecomposable injective modules nondirecting lie oriented cycles indecomposable modules prove there exist algebras having large numbers almost acyclic auslander reiten components finite cyclic multisections
Affiliations des auteurs :
Piotr Malicki 1 ; José Antonio de la Peña 2 ; Andrzej Skowroński 1
@article{10_4064_cm7190_2_2017,
author = {Piotr Malicki and Jos\'e Antonio de la Pe\~na and Andrzej Skowro\'nski},
title = {Existence of cycle-finite algebras of infinite representation type without directing projective or injective modules},
journal = {Colloquium Mathematicum},
pages = {165--190},
publisher = {mathdoc},
volume = {148},
number = {2},
year = {2017},
doi = {10.4064/cm7190-2-2017},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/cm7190-2-2017/}
}
TY - JOUR AU - Piotr Malicki AU - José Antonio de la Peña AU - Andrzej Skowroński TI - Existence of cycle-finite algebras of infinite representation type without directing projective or injective modules JO - Colloquium Mathematicum PY - 2017 SP - 165 EP - 190 VL - 148 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.4064/cm7190-2-2017/ DO - 10.4064/cm7190-2-2017 LA - en ID - 10_4064_cm7190_2_2017 ER -
%0 Journal Article %A Piotr Malicki %A José Antonio de la Peña %A Andrzej Skowroński %T Existence of cycle-finite algebras of infinite representation type without directing projective or injective modules %J Colloquium Mathematicum %D 2017 %P 165-190 %V 148 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.4064/cm7190-2-2017/ %R 10.4064/cm7190-2-2017 %G en %F 10_4064_cm7190_2_2017
Piotr Malicki; José Antonio de la Peña; Andrzej Skowroński. Existence of cycle-finite algebras of infinite representation type without directing projective or injective modules. Colloquium Mathematicum, Tome 148 (2017) no. 2, pp. 165-190. doi: 10.4064/cm7190-2-2017
Cité par Sources :