Blaschke hypersurfaces with constant non-positive affine mean curvature
Colloquium Mathematicum, Tome 150 (2017) no. 1, pp. 113-120.

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

We consider locally strongly convex complete Blaschke hypersurfaces with constant non-positive affine mean curvature and assume additional convexity properties to prove that the hypersurfaces are affine maximal.
DOI : 10.4064/cm7155s-2-2017
Keywords: consider locally strongly convex complete blaschke hypersurfaces constant non positive affine mean curvature assume additional convexity properties prove hypersurfaces affine maximal

Udo Simon 1

1 Institute Math. MA-8-3 TU Berlin Straße 17. Juni 136 D-10623 Berlin, Germany
@article{10_4064_cm7155s_2_2017,
     author = {Udo Simon},
     title = {Blaschke hypersurfaces with constant non-positive affine mean curvature},
     journal = {Colloquium Mathematicum},
     pages = {113--120},
     publisher = {mathdoc},
     volume = {150},
     number = {1},
     year = {2017},
     doi = {10.4064/cm7155s-2-2017},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/cm7155s-2-2017/}
}
TY  - JOUR
AU  - Udo Simon
TI  - Blaschke hypersurfaces with constant non-positive affine mean curvature
JO  - Colloquium Mathematicum
PY  - 2017
SP  - 113
EP  - 120
VL  - 150
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/cm7155s-2-2017/
DO  - 10.4064/cm7155s-2-2017
LA  - en
ID  - 10_4064_cm7155s_2_2017
ER  - 
%0 Journal Article
%A Udo Simon
%T Blaschke hypersurfaces with constant non-positive affine mean curvature
%J Colloquium Mathematicum
%D 2017
%P 113-120
%V 150
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/cm7155s-2-2017/
%R 10.4064/cm7155s-2-2017
%G en
%F 10_4064_cm7155s_2_2017
Udo Simon. Blaschke hypersurfaces with constant non-positive affine mean curvature. Colloquium Mathematicum, Tome 150 (2017) no. 1, pp. 113-120. doi : 10.4064/cm7155s-2-2017. http://geodesic.mathdoc.fr/articles/10.4064/cm7155s-2-2017/

Cité par Sources :