Symplectic non-squeezing for mass subcritical fourth-order Schrödinger equations
Colloquium Mathematicum, Tome 149 (2017) no. 1, pp. 137-164
Cet article a éte moissonné depuis la source Institute of Mathematics Polish Academy of Sciences
Applying strategies of R. Killip et al. (2016), we establish symplectic non-squeezing for the mass subcritical fourth-order Schrödinger equations $iu_t-\varDelta ^2 u=\pm |u|^pu$ with $3/2 \lt p \lt 8$ in dimension one.
Keywords:
applying strategies killip establish symplectic non squeezing mass subcritical fourth order schr dinger equations t vardelta dimension
Affiliations des auteurs :
Qianyun Miao  1
@article{10_4064_cm7088_11_2016,
author = {Qianyun Miao},
title = {Symplectic non-squeezing for mass subcritical fourth-order {Schr\"odinger} equations},
journal = {Colloquium Mathematicum},
pages = {137--164},
year = {2017},
volume = {149},
number = {1},
doi = {10.4064/cm7088-11-2016},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/cm7088-11-2016/}
}
TY - JOUR AU - Qianyun Miao TI - Symplectic non-squeezing for mass subcritical fourth-order Schrödinger equations JO - Colloquium Mathematicum PY - 2017 SP - 137 EP - 164 VL - 149 IS - 1 UR - http://geodesic.mathdoc.fr/articles/10.4064/cm7088-11-2016/ DO - 10.4064/cm7088-11-2016 LA - en ID - 10_4064_cm7088_11_2016 ER -
Qianyun Miao. Symplectic non-squeezing for mass subcritical fourth-order Schrödinger equations. Colloquium Mathematicum, Tome 149 (2017) no. 1, pp. 137-164. doi: 10.4064/cm7088-11-2016
Cité par Sources :