Sets of $p$-uniqueness on noncommutative locally compact groups
Colloquium Mathematicum, Tome 149 (2017) no. 2, pp. 257-263
Cet article a éte moissonné depuis la source Institute of Mathematics Polish Academy of Sciences
We prove that a closed subgroup $H$ of a locally compact group $G$ is a set of $p$-uniqueness ($1 \lt p \lt \infty $) if and only if $H$ is locally negligible. We also obtain the inverse projection theorem for sets of $p$-uniqueness.
Keywords:
prove closed subgroup locally compact group set p uniqueness infty only locally negligible obtain inverse projection theorem sets p uniqueness
Affiliations des auteurs :
Antoine Derighetti  1
@article{10_4064_cm7075_11_2016,
author = {Antoine Derighetti},
title = {Sets of $p$-uniqueness on noncommutative locally compact groups},
journal = {Colloquium Mathematicum},
pages = {257--263},
year = {2017},
volume = {149},
number = {2},
doi = {10.4064/cm7075-11-2016},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/cm7075-11-2016/}
}
TY - JOUR AU - Antoine Derighetti TI - Sets of $p$-uniqueness on noncommutative locally compact groups JO - Colloquium Mathematicum PY - 2017 SP - 257 EP - 263 VL - 149 IS - 2 UR - http://geodesic.mathdoc.fr/articles/10.4064/cm7075-11-2016/ DO - 10.4064/cm7075-11-2016 LA - en ID - 10_4064_cm7075_11_2016 ER -
Antoine Derighetti. Sets of $p$-uniqueness on noncommutative locally compact groups. Colloquium Mathematicum, Tome 149 (2017) no. 2, pp. 257-263. doi: 10.4064/cm7075-11-2016
Cité par Sources :