Sets of $p$-uniqueness on noncommutative locally compact groups
Colloquium Mathematicum, Tome 149 (2017) no. 2, pp. 257-263.

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

We prove that a closed subgroup $H$ of a locally compact group $G$ is a set of $p$-uniqueness ($1 \lt p \lt \infty $) if and only if $H$ is locally negligible. We also obtain the inverse projection theorem for sets of $p$-uniqueness.
DOI : 10.4064/cm7075-11-2016
Keywords: prove closed subgroup locally compact group set p uniqueness infty only locally negligible obtain inverse projection theorem sets p uniqueness

Antoine Derighetti 1

1 Section de mathématiques École polytechnique fédérale de Lausanne CH-1015 Lausanne, Switzerland
@article{10_4064_cm7075_11_2016,
     author = {Antoine Derighetti},
     title = {Sets of $p$-uniqueness on noncommutative locally compact groups},
     journal = {Colloquium Mathematicum},
     pages = {257--263},
     publisher = {mathdoc},
     volume = {149},
     number = {2},
     year = {2017},
     doi = {10.4064/cm7075-11-2016},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/cm7075-11-2016/}
}
TY  - JOUR
AU  - Antoine Derighetti
TI  - Sets of $p$-uniqueness on noncommutative locally compact groups
JO  - Colloquium Mathematicum
PY  - 2017
SP  - 257
EP  - 263
VL  - 149
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/cm7075-11-2016/
DO  - 10.4064/cm7075-11-2016
LA  - en
ID  - 10_4064_cm7075_11_2016
ER  - 
%0 Journal Article
%A Antoine Derighetti
%T Sets of $p$-uniqueness on noncommutative locally compact groups
%J Colloquium Mathematicum
%D 2017
%P 257-263
%V 149
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/cm7075-11-2016/
%R 10.4064/cm7075-11-2016
%G en
%F 10_4064_cm7075_11_2016
Antoine Derighetti. Sets of $p$-uniqueness on noncommutative locally compact groups. Colloquium Mathematicum, Tome 149 (2017) no. 2, pp. 257-263. doi : 10.4064/cm7075-11-2016. http://geodesic.mathdoc.fr/articles/10.4064/cm7075-11-2016/

Cité par Sources :