Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences
Ly Kim Ha 1
@article{10_4064_cm7065_11_2016, author = {Ly Kim Ha}, title = {On the global {Lipschitz} continuity of the {Bergman} projection on a class of convex domains of infinite type in $\mathbb {C}^2$}, journal = {Colloquium Mathematicum}, pages = {187--205}, publisher = {mathdoc}, volume = {150}, number = {2}, year = {2017}, doi = {10.4064/cm7065-11-2016}, language = {en}, url = {http://geodesic.mathdoc.fr/articles/10.4064/cm7065-11-2016/} }
TY - JOUR AU - Ly Kim Ha TI - On the global Lipschitz continuity of the Bergman projection on a class of convex domains of infinite type in $\mathbb {C}^2$ JO - Colloquium Mathematicum PY - 2017 SP - 187 EP - 205 VL - 150 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.4064/cm7065-11-2016/ DO - 10.4064/cm7065-11-2016 LA - en ID - 10_4064_cm7065_11_2016 ER -
%0 Journal Article %A Ly Kim Ha %T On the global Lipschitz continuity of the Bergman projection on a class of convex domains of infinite type in $\mathbb {C}^2$ %J Colloquium Mathematicum %D 2017 %P 187-205 %V 150 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.4064/cm7065-11-2016/ %R 10.4064/cm7065-11-2016 %G en %F 10_4064_cm7065_11_2016
Ly Kim Ha. On the global Lipschitz continuity of the Bergman projection on a class of convex domains of infinite type in $\mathbb {C}^2$. Colloquium Mathematicum, Tome 150 (2017) no. 2, pp. 187-205. doi : 10.4064/cm7065-11-2016. http://geodesic.mathdoc.fr/articles/10.4064/cm7065-11-2016/
Cité par Sources :