On the global Lipschitz continuity of the Bergman projection on a class of convex domains of infinite type in $\mathbb {C}^2$
Colloquium Mathematicum, Tome 150 (2017) no. 2, pp. 187-205.

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

The main purpose of this paper is to prove the global Lipschitz continuity of the Bergman projection in a class of smoothly bounded, convex domains admitting maximal type $F$ in $\mathbb {C}^2$. The maximal type $F$ here is a geometric condition which includes all cases of finite type and many cases of infinite type in the sense of Range (1978). Let $\varOmega $ be such a domain. We prove that the Bergman projection $\mathcal {P}$ maps continuously $\varLambda ^{t^{\alpha }}(\varOmega )$ to $\varLambda ^{g_{\alpha }}(\varOmega )$ for $0 \lt \alpha \le 1$, where $g_\alpha $ is a function depending on $F$.
DOI : 10.4064/cm7065-11-2016
Keywords: main purpose paper prove global lipschitz continuity bergman projection class smoothly bounded convex domains admitting maximal type mathbb maximal type here geometric condition which includes cases finite type many cases infinite type sense range varomega domain prove bergman projection mathcal maps continuously varlambda alpha varomega varlambda alpha varomega alpha where alpha function depending nbsp

Ly Kim Ha 1

1 Faculty of Mathematics and Computer Science University of Science Vietnam National University HoChiMinh City (VNU-HCM) 227 Nguyen Van Cu Street, District 5 Ho Chi Minh City, Vietnam
@article{10_4064_cm7065_11_2016,
     author = {Ly Kim Ha},
     title = {On the global {Lipschitz} continuity of the {Bergman} projection on a class of convex domains of infinite type in $\mathbb {C}^2$},
     journal = {Colloquium Mathematicum},
     pages = {187--205},
     publisher = {mathdoc},
     volume = {150},
     number = {2},
     year = {2017},
     doi = {10.4064/cm7065-11-2016},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/cm7065-11-2016/}
}
TY  - JOUR
AU  - Ly Kim Ha
TI  - On the global Lipschitz continuity of the Bergman projection on a class of convex domains of infinite type in $\mathbb {C}^2$
JO  - Colloquium Mathematicum
PY  - 2017
SP  - 187
EP  - 205
VL  - 150
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/cm7065-11-2016/
DO  - 10.4064/cm7065-11-2016
LA  - en
ID  - 10_4064_cm7065_11_2016
ER  - 
%0 Journal Article
%A Ly Kim Ha
%T On the global Lipschitz continuity of the Bergman projection on a class of convex domains of infinite type in $\mathbb {C}^2$
%J Colloquium Mathematicum
%D 2017
%P 187-205
%V 150
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/cm7065-11-2016/
%R 10.4064/cm7065-11-2016
%G en
%F 10_4064_cm7065_11_2016
Ly Kim Ha. On the global Lipschitz continuity of the Bergman projection on a class of convex domains of infinite type in $\mathbb {C}^2$. Colloquium Mathematicum, Tome 150 (2017) no. 2, pp. 187-205. doi : 10.4064/cm7065-11-2016. http://geodesic.mathdoc.fr/articles/10.4064/cm7065-11-2016/

Cité par Sources :