A simple proof of a theorem of Hajdu–Jarden–Narkiewicz
Colloquium Mathematicum, Tome 147 (2017) no. 2, pp. 217-220
Cet article a éte moissonné depuis la source Institute of Mathematics Polish Academy of Sciences
Let $K$ be an algebraic number field, and let $G$ be a finitely generated subgroup of $K^{\times }$. We give a short proof that for every positive integer $n$, there is an element of $\mathcal {O}_K$ not expressible as a sum of $n$ elements of $G$.
Mots-clés :
algebraic number field finitely generated subgroup times short proof every positive integer there element mathcal expressible sum elements
Affiliations des auteurs :
Paul Pollack  1
@article{10_4064_cm7054_9_2016,
author = {Paul Pollack},
title = {A simple proof of a theorem of {Hajdu{\textendash}Jarden{\textendash}Narkiewicz}},
journal = {Colloquium Mathematicum},
pages = {217--220},
year = {2017},
volume = {147},
number = {2},
doi = {10.4064/cm7054-9-2016},
language = {pl},
url = {http://geodesic.mathdoc.fr/articles/10.4064/cm7054-9-2016/}
}
Paul Pollack. A simple proof of a theorem of Hajdu–Jarden–Narkiewicz. Colloquium Mathematicum, Tome 147 (2017) no. 2, pp. 217-220. doi: 10.4064/cm7054-9-2016
Cité par Sources :