Identities for like-powers of Lucas sequences from algebraic identities
Colloquium Mathematicum, Tome 149 (2017) no. 2, pp. 165-177
Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences
Let $a$ and $b$ be integers with $b(a^2+4b) \ne 0$. Let $u_0 = 0$, $u_1 = 1$, and $u_n = a u_{n-1} + b u_{n-2}$ for $n \ge 2$.
Let $v_0 = 2$, $v_1 = a$, and $v_n = a v_{n-1} + b v_{n-2}$ for $n \ge 2$.
Using algebraic identities we will prove some results, including the following ones. For integers $n \ge 0$ and $k \ge 1$,
\begin{align*}
u_{n+3k}^2 = (v_{2k} + (-b)^k) u_{n+2k}^2 - (-b)^k (v_{2k} + (-b)^k) u_{n+k}^2 + (-b)^{3k} u_n^2 \\%[4pt]
v_{n+3k}^2 = (v_{2k} + (-b)^k) v_{n+2k}^2 - (-b)^k (v_{2k} + (-b)^k) v_{n+k}^2 + (-b)^{3k} v_n^2 \\%[4pt]
u_{n+4k}^3 = (v_{3k} + (-b)^k v_k) u_{n+3k}^3 - (-b)^k (v_{4k} + (-b)^k v_{2k} + 2 (-b)^{2k}) u_{n+2k}^3 \\%[4pt]
\quad + (-b)^{3k} (v_{3k} + (-b)^k v_k) u_{n+k}^3 - (-b)^{6k} u_n^3 \\%[4pt]
v_{n+4k}^3 = (v_{3k} + (-b)^k v_k) v_{n+3k}^3 - (-b)^k (v_{4k} + (-b)^k v_{2k} + 2 (-b)^{2k}) v_{n+2k}^3 \\%[4pt]
\quad + (-b)^{3k} (v_{3k} + (-b)^k v_k) v_{n+k}^3 - (-b)^{6k} v_n^3 .
\end{align*}
These results generalize some results of Gould (1963), Zeitlin and Parker (1963), Bicknell (1972), and Prodinger (1997).
Keywords:
integers n n n n using algebraic identities prove results including following integers begin align* b b b b b b b b b b b b quad b b b b b b b quad b b b end align* these results generalize results gould zeitlin parker bicknell prodinger
Affiliations des auteurs :
Curtis Cooper 1
@article{10_4064_cm7051_9_2016,
author = {Curtis Cooper},
title = {Identities for like-powers of {Lucas} sequences from algebraic identities},
journal = {Colloquium Mathematicum},
pages = {165--177},
publisher = {mathdoc},
volume = {149},
number = {2},
year = {2017},
doi = {10.4064/cm7051-9-2016},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/cm7051-9-2016/}
}
TY - JOUR AU - Curtis Cooper TI - Identities for like-powers of Lucas sequences from algebraic identities JO - Colloquium Mathematicum PY - 2017 SP - 165 EP - 177 VL - 149 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.4064/cm7051-9-2016/ DO - 10.4064/cm7051-9-2016 LA - en ID - 10_4064_cm7051_9_2016 ER -
Curtis Cooper. Identities for like-powers of Lucas sequences from algebraic identities. Colloquium Mathematicum, Tome 149 (2017) no. 2, pp. 165-177. doi: 10.4064/cm7051-9-2016
Cité par Sources :