Identities for like-powers of Lucas sequences from algebraic identities
Colloquium Mathematicum, Tome 149 (2017) no. 2, pp. 165-177.

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

Let $a$ and $b$ be integers with $b(a^2+4b) \ne 0$. Let $u_0 = 0$, $u_1 = 1$, and $u_n = a u_{n-1} + b u_{n-2}$ for $n \ge 2$. Let $v_0 = 2$, $v_1 = a$, and $v_n = a v_{n-1} + b v_{n-2}$ for $n \ge 2$. Using algebraic identities we will prove some results, including the following ones. For integers $n \ge 0$ and $k \ge 1$, \begin{align*} u_{n+3k}^2 = (v_{2k} + (-b)^k) u_{n+2k}^2 - (-b)^k (v_{2k} + (-b)^k) u_{n+k}^2 + (-b)^{3k} u_n^2 \\%[4pt] v_{n+3k}^2 = (v_{2k} + (-b)^k) v_{n+2k}^2 - (-b)^k (v_{2k} + (-b)^k) v_{n+k}^2 + (-b)^{3k} v_n^2 \\%[4pt] u_{n+4k}^3 = (v_{3k} + (-b)^k v_k) u_{n+3k}^3 - (-b)^k (v_{4k} + (-b)^k v_{2k} + 2 (-b)^{2k}) u_{n+2k}^3 \\%[4pt] \quad + (-b)^{3k} (v_{3k} + (-b)^k v_k) u_{n+k}^3 - (-b)^{6k} u_n^3 \\%[4pt] v_{n+4k}^3 = (v_{3k} + (-b)^k v_k) v_{n+3k}^3 - (-b)^k (v_{4k} + (-b)^k v_{2k} + 2 (-b)^{2k}) v_{n+2k}^3 \\%[4pt] \quad + (-b)^{3k} (v_{3k} + (-b)^k v_k) v_{n+k}^3 - (-b)^{6k} v_n^3 . \end{align*} These results generalize some results of Gould (1963), Zeitlin and Parker (1963), Bicknell (1972), and Prodinger (1997).
DOI : 10.4064/cm7051-9-2016
Keywords: integers n n n n using algebraic identities prove results including following integers begin align* b b b b b b b b b b b b quad b b b b b b b quad b b b end align* these results generalize results gould zeitlin parker bicknell prodinger

Curtis Cooper 1

1 Department of Mathematics and Computer Science University of Central Missouri Warrensburg, MO 64093, U.S.A.
@article{10_4064_cm7051_9_2016,
     author = {Curtis Cooper},
     title = {Identities for like-powers of {Lucas} sequences from algebraic identities},
     journal = {Colloquium Mathematicum},
     pages = {165--177},
     publisher = {mathdoc},
     volume = {149},
     number = {2},
     year = {2017},
     doi = {10.4064/cm7051-9-2016},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/cm7051-9-2016/}
}
TY  - JOUR
AU  - Curtis Cooper
TI  - Identities for like-powers of Lucas sequences from algebraic identities
JO  - Colloquium Mathematicum
PY  - 2017
SP  - 165
EP  - 177
VL  - 149
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/cm7051-9-2016/
DO  - 10.4064/cm7051-9-2016
LA  - en
ID  - 10_4064_cm7051_9_2016
ER  - 
%0 Journal Article
%A Curtis Cooper
%T Identities for like-powers of Lucas sequences from algebraic identities
%J Colloquium Mathematicum
%D 2017
%P 165-177
%V 149
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/cm7051-9-2016/
%R 10.4064/cm7051-9-2016
%G en
%F 10_4064_cm7051_9_2016
Curtis Cooper. Identities for like-powers of Lucas sequences from algebraic identities. Colloquium Mathematicum, Tome 149 (2017) no. 2, pp. 165-177. doi : 10.4064/cm7051-9-2016. http://geodesic.mathdoc.fr/articles/10.4064/cm7051-9-2016/

Cité par Sources :