Bertrand’s postulate for number fields
Colloquium Mathematicum, Tome 147 (2017) no. 2, pp. 165-180
Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences
Consider an algebraic number field, $K$, and its ring of integers, $\mathcal {O}_K$. There exists a smallest $B_K \gt 1$ such that for any $x \gt 1$ we can find a prime ideal, $\mathfrak {p}$, in $\mathcal {O}_K$ with norm $N(\mathfrak {p})$ in the interval $[x,B_Kx]$. This is a generalization of Bertrand’s postulate to number fields, and in this paper we produce bounds on $B_K$ in terms of the invariants of $K$ from an effective prime ideal theorem due to Lagarias and Odlyzko (1977). We also show that a bound on $B_K$ can be obtained from an asymptotic estimate for the number of ideals in $\mathcal {O}_K$ with norm less than $x$.
Keywords:
consider algebraic number field its ring integers mathcal there exists smallest prime ideal mathfrak mathcal norm mathfrak interval generalization bertrand postulate number fields paper produce bounds terms invariants effective prime ideal theorem due lagarias odlyzko nbsp bound obtained asymptotic estimate number ideals mathcal norm nbsp
Affiliations des auteurs :
Thomas A. Hulse 1 ; M. Ram Murty 2
@article{10_4064_cm7048_9_2016,
author = {Thomas A. Hulse and M. Ram Murty},
title = {Bertrand{\textquoteright}s postulate for number fields},
journal = {Colloquium Mathematicum},
pages = {165--180},
publisher = {mathdoc},
volume = {147},
number = {2},
year = {2017},
doi = {10.4064/cm7048-9-2016},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/cm7048-9-2016/}
}
TY - JOUR AU - Thomas A. Hulse AU - M. Ram Murty TI - Bertrand’s postulate for number fields JO - Colloquium Mathematicum PY - 2017 SP - 165 EP - 180 VL - 147 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.4064/cm7048-9-2016/ DO - 10.4064/cm7048-9-2016 LA - en ID - 10_4064_cm7048_9_2016 ER -
Thomas A. Hulse; M. Ram Murty. Bertrand’s postulate for number fields. Colloquium Mathematicum, Tome 147 (2017) no. 2, pp. 165-180. doi: 10.4064/cm7048-9-2016
Cité par Sources :