Bertrand’s postulate for number fields
Colloquium Mathematicum, Tome 147 (2017) no. 2, pp. 165-180.

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

Consider an algebraic number field, $K$, and its ring of integers, $\mathcal {O}_K$. There exists a smallest $B_K \gt 1$ such that for any $x \gt 1$ we can find a prime ideal, $\mathfrak {p}$, in $\mathcal {O}_K$ with norm $N(\mathfrak {p})$ in the interval $[x,B_Kx]$. This is a generalization of Bertrand’s postulate to number fields, and in this paper we produce bounds on $B_K$ in terms of the invariants of $K$ from an effective prime ideal theorem due to Lagarias and Odlyzko (1977). We also show that a bound on $B_K$ can be obtained from an asymptotic estimate for the number of ideals in $\mathcal {O}_K$ with norm less than $x$.
DOI : 10.4064/cm7048-9-2016
Keywords: consider algebraic number field its ring integers mathcal there exists smallest prime ideal mathfrak mathcal norm mathfrak interval generalization bertrand postulate number fields paper produce bounds terms invariants effective prime ideal theorem due lagarias odlyzko nbsp bound obtained asymptotic estimate number ideals mathcal norm nbsp

Thomas A. Hulse 1 ; M. Ram Murty 2

1 Department of Mathematics and Statistics Colby College Waterville, ME 04901, U.S.A.
2 Department of Mathematics and Statistics Queen’s University Kingston, ON, Canada, K7L 3N6
@article{10_4064_cm7048_9_2016,
     author = {Thomas A. Hulse and M. Ram Murty},
     title = {Bertrand{\textquoteright}s postulate for number fields},
     journal = {Colloquium Mathematicum},
     pages = {165--180},
     publisher = {mathdoc},
     volume = {147},
     number = {2},
     year = {2017},
     doi = {10.4064/cm7048-9-2016},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/cm7048-9-2016/}
}
TY  - JOUR
AU  - Thomas A. Hulse
AU  - M. Ram Murty
TI  - Bertrand’s postulate for number fields
JO  - Colloquium Mathematicum
PY  - 2017
SP  - 165
EP  - 180
VL  - 147
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/cm7048-9-2016/
DO  - 10.4064/cm7048-9-2016
LA  - en
ID  - 10_4064_cm7048_9_2016
ER  - 
%0 Journal Article
%A Thomas A. Hulse
%A M. Ram Murty
%T Bertrand’s postulate for number fields
%J Colloquium Mathematicum
%D 2017
%P 165-180
%V 147
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/cm7048-9-2016/
%R 10.4064/cm7048-9-2016
%G en
%F 10_4064_cm7048_9_2016
Thomas A. Hulse; M. Ram Murty. Bertrand’s postulate for number fields. Colloquium Mathematicum, Tome 147 (2017) no. 2, pp. 165-180. doi : 10.4064/cm7048-9-2016. http://geodesic.mathdoc.fr/articles/10.4064/cm7048-9-2016/

Cité par Sources :