Homogeneous Rota–Baxter operators on the 3-Lie algebra $A_{\omega }$ (II)
Colloquium Mathematicum, Tome 149 (2017) no. 2, pp. 193-209.

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

We study $k$-order homogeneous Rota–Baxter operators of weight $1$ on the simple $3$-Lie algebra $A_{\omega }$ (over a field $\mathbb F$ of characteristic zero), which is realized by an associative commutative algebra $A$ equipped with a derivation $\varDelta $ and an involution $\omega $ (Lemma 2.3). A $k$-order homogeneous Rota–Baxter operator on $A_{\omega }$, where $k\in \mathbb Z$, is a Rota–Baxter operator $R$ satisfying $R(L_m)=f(m+k)L_{m+k}$ for all generators $\{ L_m \mid m\in \mathbb Z \}$ of $A_{\omega }$ and a map $f : \mathbb Z \rightarrow \mathbb F$. We prove that $R$ is a $k$-order homogeneous Rota–Baxter operator on $A_{\omega }$ of weight $1$ with $k\not =0$ if and only if $R=0$ (Theorem 3.2), and $R$ is a $0$-order homogeneous Rota–Baxter operator on $A_{\omega }$ of weight $1$ if and only if $R$ is one of the thirty-eight possibilities which are described in Theorems 3.5, 3.7, 3.9, 3.10, 3.18, 3.21 and 3.22.
DOI : 10.4064/cm7000-4-2017
Keywords: study k order homogeneous rota baxter operators weight simple lie algebra omega field mathbb characteristic zero which realized associative commutative algebra equipped derivation vardelta involution omega lemma nbsp k order homogeneous rota baxter operator omega where mathbb rota baxter operator satisfying l generators mid mathbb omega map mathbb rightarrow mathbb prove k order homogeneous rota baxter operator omega weight only theorem nbsp order homogeneous rota baxter operator omega weight only thirty eight possibilities which described theorems

Ruipu Bai 1 ; Yinghua Zhang 1

1 College of Mathematics and Information Science Hebei University Baoding 071002, China
@article{10_4064_cm7000_4_2017,
     author = {Ruipu Bai and Yinghua Zhang},
     title = {Homogeneous {Rota{\textendash}Baxter} operators on the {3-Lie} algebra $A_{\omega }$ {(II)}},
     journal = {Colloquium Mathematicum},
     pages = {193--209},
     publisher = {mathdoc},
     volume = {149},
     number = {2},
     year = {2017},
     doi = {10.4064/cm7000-4-2017},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/cm7000-4-2017/}
}
TY  - JOUR
AU  - Ruipu Bai
AU  - Yinghua Zhang
TI  - Homogeneous Rota–Baxter operators on the 3-Lie algebra $A_{\omega }$ (II)
JO  - Colloquium Mathematicum
PY  - 2017
SP  - 193
EP  - 209
VL  - 149
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/cm7000-4-2017/
DO  - 10.4064/cm7000-4-2017
LA  - en
ID  - 10_4064_cm7000_4_2017
ER  - 
%0 Journal Article
%A Ruipu Bai
%A Yinghua Zhang
%T Homogeneous Rota–Baxter operators on the 3-Lie algebra $A_{\omega }$ (II)
%J Colloquium Mathematicum
%D 2017
%P 193-209
%V 149
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/cm7000-4-2017/
%R 10.4064/cm7000-4-2017
%G en
%F 10_4064_cm7000_4_2017
Ruipu Bai; Yinghua Zhang. Homogeneous Rota–Baxter operators on the 3-Lie algebra $A_{\omega }$ (II). Colloquium Mathematicum, Tome 149 (2017) no. 2, pp. 193-209. doi : 10.4064/cm7000-4-2017. http://geodesic.mathdoc.fr/articles/10.4064/cm7000-4-2017/

Cité par Sources :