Construction of a braided monoidal category for Brzeziński crossed coproducts of Hopf $\pi $-algebras
Colloquium Mathematicum, Tome 149 (2017) no. 2, pp. 309-323.

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

Let $\pi $ be a group, $C, H$ Hopf $\pi $-algebras, and $g_{\alpha }: C_{\alpha }\otimes H_{\alpha }\rightarrow H_{\alpha }\otimes H_{\alpha }$ and $T_{\alpha }: C_{\alpha }\otimes H_{\alpha }\rightarrow H_{\alpha }\otimes C_{\alpha }$ families of linear maps. We give necessary and sufficient conditions for the family of Brzeziński crossed coproduct coalgebras $\{C_{\alpha }\mathbin {\#^{g_{\alpha }}_{T_{\alpha }}} H_{\alpha }\}_{\alpha \in \pi }$ to be a Hopf $\pi $-algebra. Moreover, necessary and sufficient conditions for the Brzeziński crossed coproduct Hopf $\pi $-algebra $C\mathbin {{\natural ^{g}_{T}}^{\pi }} H$ to be quasitriangular are derived, and in this case, the left $\pi $-module category ${}_{C\mathbin {{\natural ^{g}_{T}}^{\pi }} H}{\mathcal M}$ is a braided monoidal category.
DOI : 10.4064/cm6987-9-2016
Keywords: group hopf algebras alpha alpha otimes alpha rightarrow alpha otimes alpha alpha alpha otimes alpha rightarrow alpha otimes alpha families linear maps necessary sufficient conditions family brzezi ski crossed coproduct coalgebras alpha mathbin alpha alpha alpha alpha hopf algebra moreover necessary sufficient conditions brzezi ski crossed coproduct hopf algebra mathbin natural quasitriangular derived module category mathbin natural mathcal braided monoidal category

Tianshui Ma 1 ; Haiying Li 1 ; Shaoxian Xu 2

1 School of Mathematics and Information Science Henan Normal University Xinxiang 453007, China
2 School of Mathematics and Statistics Nanyang Normal University Nanyang 473061, China
@article{10_4064_cm6987_9_2016,
     author = {Tianshui Ma and Haiying Li and Shaoxian Xu},
     title = {Construction of a braided monoidal category for {Brzezi\'nski} crossed coproducts of {Hopf} $\pi $-algebras},
     journal = {Colloquium Mathematicum},
     pages = {309--323},
     publisher = {mathdoc},
     volume = {149},
     number = {2},
     year = {2017},
     doi = {10.4064/cm6987-9-2016},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/cm6987-9-2016/}
}
TY  - JOUR
AU  - Tianshui Ma
AU  - Haiying Li
AU  - Shaoxian Xu
TI  - Construction of a braided monoidal category for Brzeziński crossed coproducts of Hopf $\pi $-algebras
JO  - Colloquium Mathematicum
PY  - 2017
SP  - 309
EP  - 323
VL  - 149
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/cm6987-9-2016/
DO  - 10.4064/cm6987-9-2016
LA  - en
ID  - 10_4064_cm6987_9_2016
ER  - 
%0 Journal Article
%A Tianshui Ma
%A Haiying Li
%A Shaoxian Xu
%T Construction of a braided monoidal category for Brzeziński crossed coproducts of Hopf $\pi $-algebras
%J Colloquium Mathematicum
%D 2017
%P 309-323
%V 149
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/cm6987-9-2016/
%R 10.4064/cm6987-9-2016
%G en
%F 10_4064_cm6987_9_2016
Tianshui Ma; Haiying Li; Shaoxian Xu. Construction of a braided monoidal category for Brzeziński crossed coproducts of Hopf $\pi $-algebras. Colloquium Mathematicum, Tome 149 (2017) no. 2, pp. 309-323. doi : 10.4064/cm6987-9-2016. http://geodesic.mathdoc.fr/articles/10.4064/cm6987-9-2016/

Cité par Sources :