Construction of a braided monoidal category for Brzeziński crossed coproducts of Hopf $\pi $-algebras
Colloquium Mathematicum, Tome 149 (2017) no. 2, pp. 309-323
Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences
Let $\pi $ be a group, $C, H$ Hopf $\pi $-algebras, and $g_{\alpha }: C_{\alpha }\otimes H_{\alpha }\rightarrow H_{\alpha }\otimes H_{\alpha }$ and $T_{\alpha }: C_{\alpha }\otimes H_{\alpha }\rightarrow H_{\alpha }\otimes C_{\alpha }$ families of linear maps. We give necessary and sufficient conditions for the family of Brzeziński crossed coproduct coalgebras $\{C_{\alpha }\mathbin {\#^{g_{\alpha }}_{T_{\alpha }}} H_{\alpha }\}_{\alpha \in \pi }$ to be a Hopf $\pi $-algebra. Moreover, necessary and sufficient conditions for the Brzeziński crossed coproduct Hopf $\pi $-algebra $C\mathbin {{\natural ^{g}_{T}}^{\pi }} H$ to be quasitriangular are derived, and in this case, the left $\pi $-module category ${}_{C\mathbin {{\natural ^{g}_{T}}^{\pi }} H}{\mathcal M}$ is a braided monoidal category.
Keywords:
group hopf algebras alpha alpha otimes alpha rightarrow alpha otimes alpha alpha alpha otimes alpha rightarrow alpha otimes alpha families linear maps necessary sufficient conditions family brzezi ski crossed coproduct coalgebras alpha mathbin alpha alpha alpha alpha hopf algebra moreover necessary sufficient conditions brzezi ski crossed coproduct hopf algebra mathbin natural quasitriangular derived module category mathbin natural mathcal braided monoidal category
Affiliations des auteurs :
Tianshui Ma 1 ; Haiying Li 1 ; Shaoxian Xu 2
@article{10_4064_cm6987_9_2016,
author = {Tianshui Ma and Haiying Li and Shaoxian Xu},
title = {Construction of a braided monoidal category for {Brzezi\'nski} crossed coproducts of {Hopf} $\pi $-algebras},
journal = {Colloquium Mathematicum},
pages = {309--323},
publisher = {mathdoc},
volume = {149},
number = {2},
year = {2017},
doi = {10.4064/cm6987-9-2016},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/cm6987-9-2016/}
}
TY - JOUR AU - Tianshui Ma AU - Haiying Li AU - Shaoxian Xu TI - Construction of a braided monoidal category for Brzeziński crossed coproducts of Hopf $\pi $-algebras JO - Colloquium Mathematicum PY - 2017 SP - 309 EP - 323 VL - 149 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.4064/cm6987-9-2016/ DO - 10.4064/cm6987-9-2016 LA - en ID - 10_4064_cm6987_9_2016 ER -
%0 Journal Article %A Tianshui Ma %A Haiying Li %A Shaoxian Xu %T Construction of a braided monoidal category for Brzeziński crossed coproducts of Hopf $\pi $-algebras %J Colloquium Mathematicum %D 2017 %P 309-323 %V 149 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.4064/cm6987-9-2016/ %R 10.4064/cm6987-9-2016 %G en %F 10_4064_cm6987_9_2016
Tianshui Ma; Haiying Li; Shaoxian Xu. Construction of a braided monoidal category for Brzeziński crossed coproducts of Hopf $\pi $-algebras. Colloquium Mathematicum, Tome 149 (2017) no. 2, pp. 309-323. doi: 10.4064/cm6987-9-2016
Cité par Sources :